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Context: A common practice in JavaScript development is to ship and deploy an application as a large file, 

called bundle , which is the result of combining the application code along with the code of all the libraries 

the application depends on. Despite the benefits of having a single bundle per application, this approach leads 

to applications being shipped with significant portions of code that are actually not used, which unnecessarily 

inflates the JavaScript bundles and could slow down website loading because of the extra unused code. Although 

some static analysis techniques exist for removing unused code, our investigations suggest that there is still room 

for improvements. 

Objective: The goal of this paper is to address the problem of reducing the size of bundle files in JavaScript 

applications. 

Method: In this context, we define the notion of Unused Foreign Function (UFF) to denote a JavaScript function 

contained in dependent libraries that is not needed at runtime. Furthermore, we propose an approach based on 

dynamic analysis that assists developers to identify and remove UFFs from JavaScript bundles. 

Results: We report on a case-study performed over 22 JavaScript applications, showing evidence that our approach 

can produce size reductions of 26% on average (with reductions going up to 66% in some applications). 

Conclusion: It is concluded that removing unused foreign functions from JavaScript bundles helps reduce their 

size, and thus, it can boost the results of existing static analysis techniques. 
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. Introduction 

A JavaScript (JS) application is commonly deployed by bundling the

ource code application with the source of the used libraries. For ex-

mple, when a website embeds a chart made with Chart.js, 1 the web-

ite includes a large Chart.bundle.js file, made of concatenating

he source code of Chart.js and that of all its dependent libraries. A

ossible reason for this bundling practice is that the original definition

f JS does not consider the notion of module, as other programming

anguages do. 

Although this way of packaging applications is convenient ( e.g., only

ne self-contained file is necessary, no explicit module mechanisms are
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equired), concatenating the application code along with all its depen-

ent libraries tends to deploy more code than necessary. This problem

s well-known in the JS community. In fact, tools such as Browserify 2 

nd Webpack 3 rely on static analysis techniques that can exclude unref-

renced and isolated JS modules from a bundle. However, despite the

elp of such tools, we found evidence that applications are still shipped

ith unused code related to JS libraries, and our position is that static

nalysis is not enough for developers to address the problem and thus,

ynamic analysis should be also used. 

Running a hybrid technique, based on static and dynamic analysis,

ver a set of JS applications, we detected that bundle size can be reduced

y 26% on average (when comparing to the bundles optimized using

nly static analysis). In this context, we propose the notion of Unused

oreign Function ( UFF ) to characterize functions contained in a JS library
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Fig. 1. Chains of dependencies in Chart.js. 
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Fig. 2. Development process overview of a JS package. 

Fig. 3. UFF context example. 
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4 http://www.commonjs.org . 
5 https://github.com/amdjs/amdjs-api/wiki/AMD. 
6 https://github.com/umdjs/umd. 
sed by a given application, which are not called by the application, but

re still shipped as part of the application bundle. That is to say, UFFs are

nused functions that do not belong to the application code but to the

ource code of the dependencies of the application. The fact that these

unctions are in the source code of dependencies made UFFs difficult to

e identified. 

We have developed a minimizing tool, called UFF Remover, that

omplements traditional bundling tools by identifying and removing

FFs through static and dynamic analysis. Our approach works in 4

tages, as follows. First, we compute the list of all required clusters of

ource code (called modules in JS). Second, these modules are instru-

ented. Third, a set of execution traces are obtained from the applica-

ion so as to identify parts of the libraries that are not used ( i.e.,UFFs

ontained in libraries). Fourth, the UFFs just spotted are suggested to

he developer. Thus, developers can decide which UFFs should be au-

omatically removed by our approach. Note that an application may

se more than one module system to express dependencies ( e.g., npm,

md, CommonJS), and thus, removing unused portions of a library is a

hallenging activity that, if not carefully performed, can impact the ap-

lication semantics. We ran our tool over 22 JavaScript applications and

ound that around 70% of the functions in the bundles that take part in

ependencies are UFFs . Furthermore, we performed a qualitative study

ith 10 JS developers that confirmed the usefulness of our approach. 

The rest of the paper is structured as follows. Section 2 presents the

ain concepts used in this work. Section 3 outlines the problem we are

ocusing on and presents the core steps of our approach. Section 4 de-

cribes the case study we conducted and highlights the benefits of our

inimizing tool. Section 5 presents the related work. Section 6 con-

ludes and outlines our future work. 

. Background 

Functions are a fundamental modular unit in JavaScript (JS) applica-

ions [1] . They are generally contained in .js files. A function encloses

 set of statements and can be invoked from other functions. As with

ther programming languages, functions are basic bricks that enable

ode reuse, information hiding, and composition. 

Functions can be enclosed by modules. Since JS does not provide

uilt-in module mechanisms, the JS users community has built its own

odule systems to help developers build small units of independent,

eusable code at a higher abstraction level than functions ( e.g., using
19 
lobal variables, or implementing CommonJS, 4 AMD, 5 UMD, 6 among

thers). In practice, most JavaScript modules are implemented in a sep-

rate JSfile and export functions that can be used by other modules,

hile maintaining the remaining functions private to the module. 

Module definitions are necessary to implement many JSdesign pat-

erns and they are very useful when building non-trivial JavaScript-

ased applications [2] . These module definitions are supported by some

ibraries in EcmaScript 5 (ES5), the standard JSis based on. EcmaScript 6

ES6 or ES2015) provides a built-in module definition (called Harmony)

http://www.commonjs.org
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Fig. 4. UFF treatment overview. 

Fig. 5. Module dependency graph example. 
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ut it is not yet completely supported by all JSinterpreters. However, in

ur work we consider applications written in Harmony because they can

e transpiled 7 to ES5. 

Moreover, by using any module definition (with the exception of

lobal variables), a given module can specify dependencies on other

odules. This kind of dependency is specified by the required relation-

hip. 

A library is commonly distributed as a ready-to-use single JSfile.

owever, with the emergence of JS package management systems,

ibraries are also available as packages. Common JS packages (e.g.

hart.js, Moment, Angular, etc.) are available through central reposi-

ories and are handled by package managers such as NPM 

8 and Bower. 9 
7 Transpilation is the process of transforming and compiling from one lan- 

uage to another with a similar level of abstraction. For example, in JS this task 

an be performed with Babel. 
8 https://www.npmjs.com/ . 
9 https://bower.io/ . 

fi  

m  
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20 
hey are similar to other package managers such as Maven 10 in Java or

ubygems 11 in Ruby. 

An illustrative example of the use of packages can be seen in the

hart.js library. Chart.js is a project for creating charts using the HTML5

anvas element. As shown in Fig. 1 , functionality about displaying dates

nd color manipulation of Chart.js is delegated to functions implemented

n libraries moment and chartjs-color . Thus, Chart.js requires moment and

hartjs-color . In the same way, chartjs-color delegates functionality to

ther library functions. As a result, several chains of dependencies might

rise among the libraries. 

.1. Distributing JS applications 

Despite the advantages of using external libraries, the use of library

unctions requires their containing libraries to be included in the de-

loyment environment. In this schema, there are two strategies to per-

orm the deployment. The first strategy is to let the final user download

nd install the libraries needed. This strategy is generally undesirable

ecause it makes the installation process slower and error-prone. For

xample, in Fig. 1 , the user that needs Chart.js should download and in-

tall moment and chartjs-color . Moreover, users may inadvertently install

n incompatible version of moment or chartjs-color , which may cause un-

xpected failures. Besides, in front-end applications downloading the li-

raries separately increases the number of HTTP requests, which affects

he loading time of the web page [3] . 

The second strategy is to bundle the required libraries along with

he application that uses them. In the example of Fig. 1 , this would

ean packaging the moment and chartjs-color libraries with the Chart.js

ode. While this second approach is less likely to incur in version errors

r degrade HTTP requests, the size of the distribution can significantly

ncrease. In our example, this means that the size of Chart.js with the

ource code of all its dependencies is significantly bigger than only the

ource code of Chart.js (without libraries). Thus, a single download of a

arge file is made rather than many small downloads. 

.2. Size of JavaScript bundles does matter 

Over the years, front-end JSdevelopers have been choosing the sec-

nd strategy [4] . One reason for this is that a single HTTP request of

 large file is likely to be less expensive than many HTTP requests of

mall files. In this context, in a typical JS development process, third-

arty libraries are packaged with the source code being developed be-

ore a release. This packaging phase is composed mainly by bundling

nd minification processes ( Fig. 2 ). These processes are important to

mprove the deployment and reduce the final size of the application.

educing the size of JS applications is important because it decreases

ownload times and the amount of data for applications distributed via

he internet [5] . Furthermore, it decreases the memory required and

ower consumption in mobile devices [6] . 

The bundling process is the concatenation of all JS files into a single

le called “bundle ”. The bundle contains all the application code and

he libraries required by the application. Some bundling tools (such as

rowserify and webpack) take advantage of this process to reduce code.

or example, these tools can discard modules that are not required by

ny other module (by looking at the required relationship) or avoid a

ackage that is not needed and was erroneously included as a depen-

ency of the project. 

The bundling process is followed by the minification process. Mini-

cation is primarily based on text techniques (e.g. changing names, re-

oving spaces, line breaks and comments) to reduce the final size of

he bundle. Some tools (such as Google Closure Compiler 12 (GCC)) of-

er aggressive compression code transformations, renaming of symbols
10 http://maven.org . 
11 https://rubygems.org/ . 
12 https://developers.google.com/closure/compiler/ . 

https://www.npmjs.com/
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13 
nd dead code elimination through static analysis. However, these ap-

roaches do not detect UFFs . 

Despite the reductions that can be made during the bundling process,

e have found that there is still a significant portion of unused code

hat is shipped when deploying JavaScript applications. Bundling an

pplication with unused code may be problematic if a bundle is large and

ontains a large amount of code that is not necessary in the context of the

pplication being built. Removing unused code is challenging, partially

ue to the dynamically typed nature of JS. Determining function calls

ften depends on the execution of the application along with the context

n which it is executed [2,7] . We argue that through a dynamic analysis

f the application it is possible to find significant portions of unused code

hat are not being eliminated during the development process. In this

ontext, monitoring JS executions to identify unused code can greatly

omplement current bundling tools to reduce the size of the bundles. 

. Reducing bundled application size 

We present an approach, called UFF Remover, that complements

tatic analyzes approaches (used during the bundling process). It dy-

amically analyzes the execution to identify and remove unnecessary

ource code from libraries, thus, reducing the size of bundle distribu-

ions. Specifically, our work focuses on removing unused functions from

ibraries. 

.1. Motivating example 

Let us consider the example shown in Fig. 3 , which is a simplified

ituation found in one of our case studies. An application called messy

an object model for HTTP messages) uses a third-party library (i.e. a

ackage) called underscore . In turn, underscore uses a library called en-

oding . The messy package contains a main module messy.js , and an-

ther module called HttpRequest.js with functions createRequest and toJ-

ON , respectively. The messy module requires the HttpRequest.js module

nd when the createRequest function is called, it subsequently calls the

oJSON function. Once toJSON is invoked, it triggers a series of calls

nvolving the library functions createAssigner, toUTF8 , and encode , by

ollowing the chain of dependencies. In this way, all library functions

re called except toANSI and toEBCDIC (from underscore) and decode

from encoding). In the context of this example, we argue that functions

oANSI, toEBCDIC , and decode are unnecessary for the application messy

ecause they are never executed (at runtime). An optimal bundling pro-

ess should discard those functions. Existing bundling tools can remove

unctions from the unrequired modules (such as decode.js ), but they do

ot take any action with unused functions from required modules (such

s toANSI and toEBCDIC ). For this reason, this work focuses on detecting

nd removing such functions from required modules. 
21 
.2. Approach in a nutshell 

Removing UFFs contributes reducing the final size of the distribu-

ion files without affecting the application behavior. An overview of

ur approach is shown in Fig. 4 . The approach has two stages: (i) the

FF identification and (ii) the UFF removal. The UFF identification stage

onsists of determining whether a library function is unnecessary in

he context of an application. The UFF removal stage restructures the

ource code to remove the UFFs . These stages are detailed in the next

ub-sections. 

.3. UFF identification 

This stage is divided into three main activities, namely: Identification

f Required Modules, Instrumentation of Required Modules , and Dynamic

FF Detection . 

1 - Identification of required modules . In this activity a static anal-

sis of the source code of a JSapplication is performed to identify the

equired modules. Coming back to the example of Fig. 3 , all the modules

re required by messy with the exception of decode . To identify required

odules, we rely on the Browserify bundling tool. Basically, Browserify

raverses the dependencies between modules discarding those that are

ot required. Thus, all discarded modules will not be part of the final

undle. For example, Fig. 5 shows the dependency graph for the scenario

epicted in Fig. 3 in which messy.js is the source node. Note that decode

s not part of the graph (i.e., it has no edges) since it is not required by

ny module in the source code. All the connected nodes in the graph are

equired modules and constitute the input for the next activity. 

2 - Instrumentation of required modules . This activity instruments

ll the functions within the required modules (as detected in the previ-

us activity) with the goal of collecting information about those func-

ions effectively executed at runtime. The process of instrumentation

tarts by parsing the JSfiles in order to identify functions. According

o the standard EcmaScript 5 13 (the standard that most of the browsers

upport), we analyze two types of function patterns: Function Declaration

nd Function Expression . 

A Function Declaration defines a named function variable without re-

uiring variable assignment. Function Declarations occur as standalone

onstructs and cannot be nested within non-function blocks. The syntax

s defined as function Identifier ( FormalParameterList opt ) { FunctionBody }.

or example: 

A Function Expression defines a function as a part of a larger ex-

ression syntax (typically a variable assignment). Functions defined via

unction Expressions can have a name or be anonymous (i.e. the only

ifference with a Function Declaration is that the identifier is optional).

he syntax is defined as function Identifier opt ( FormalParameterList opt )

 FunctionBody }. For example: 
http://www.ecma-international.org/ecma-262/5.1/ . 

http://www.ecma-international.org/ecma-262/5.1/
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Once the functions are identified, the instrumentation adds an in-

truction at the beginning of each function defined in a library. This

nstruction logs information into a file at runtime, recording whether a

unction was executed. In this way, the output of the activity are all the

nstrumented functions of the required modules of libraries. It is impor-

ant to remark that this instrumentation is automatically made by our

pproach. 

To generate the information about executed functions, the program

eeds to be exercised in the environment for which it was developed

hrough execution traces. This is achieved through the task Generation

f Profiling Information . The execution traces must ensure a program cov-

rage as complete as possible. This task can be performed using the tests

hipped with the program (if any) in the development environment or

ia interactions with the program in the production environment. Con-

idering the example of Fig. 3 , a function call toJSON() would produce

he following execution trace: 

Note that functions createAssigner(), toUTF8() , and encode() were ex-

cuted as a result of the invocation to function toJSON() in module

ttpRequest.js . 

The output of the Generation of Profiling Information task is a trace

le that contains all the functions of required libraries called during the

xecution of the application. 
22 
3 - Dynamic UFF detection .This activity analyzes the information

ollected at runtime about function executions. For each function in the

equired modules of the libraries, this activity checks whether a trace

xists that indicates that the function was executed. If the function is not

ound in the trace file (i.e. it was not executed), it is classified as UFF . In

he context of the example of Fig. 3 , functions toANSI and toEBCDIC are

ever called, thus a trace indicating their execution is never logged in

he file. Therefore, toANSI and toEBCDIC are identified as UFF . At last,

 list with all the UFFs is returned to the developer. 

.4. UFF Removal 

Once a UFF is confirmed by the developer, our approach helps to

emove it. Eliminating UFFs is not always straightforward in real-life

pplications. This is due to the extensive use that JSdevelopers give to

ynamic features of the JSlanguage [8] . An example of a dynamic fea-

ure is the eval function. Eval is widely used by developers and it has the

apability of executing code provided as a string, making it a powerful

echanism of reflection. Let us assume that function createAssigner in

odule underscore.js uses eval to create an object: 
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14 This kind of request is usually enabled by AJAX technology. It is important 

to remark that some browsers can discontinue this feature due to UX problems. 

However, this lazy loading could be replaced with a similar technology in the 
In the code above, our approach identifies functions toANSI and toE-

CDIC as UFFs since they are not executed by the application. However,

f we remove these functions from the source code, it will crash in the

ext execution. This is because the eval function is used to construct an

bject whose methods are determined at runtime. The method createAs-

igner creates an object with properties assign+assignTypes[i] binding to

ethods to+assignTypes[i] , where assignTypes[i] is part of the name of

 function. The names are passed as parameter ( “UTF8 ”, “ANSI ”) from

he module HttpRequest.js that loads them from a properties file. Thus,

hile the application only executes the function to encode in UTF8, if

he function “toANSI ” does not exist, the execution throws an exception

hen eval is executed. This is because the interpreter will try to bind

 property assignANSI to a method toANSI . Although the UFFtoEBCDIC

ould be eliminated from the final bundle, it is very difficult to distin-

uish the UFFs that are referenced using dynamic features of JSfrom

hose that are not. 

For this reason, our approach uses a less aggressive strategy. Specif-

cally, our approach automatically “empties ” the functions instead of

emoving them completely. This strategy preserves the application be-

avior in situations like the one above. Also, since the source code gen-
f

23 
rated by our approach is not intended to be read by a developer but

o be minified (as in Uglify), this strategy does not affect the readability

f code. However, emptying a function has a disadvantage. The code

elated to the header and keys for opening and closing the body of the

unction are preserved taking up space. Moreover, to make our removal

trategy safe, we use a lazy load mechanism for the removed functions.

his mechanism is implemented by replacing the body of an UFFs by

 synchronous XMLHttpRequest 14 when emptying the function. If the

unction is called at run-time (i.e. the UFF is a false positive), this call

oads the removed body from the server. While this strategy makes the

emoval safe, it has the disadvantage of adding a line of code with the

all and also a global function with the code related to the lazy load.

evertheless, we believe that this space is negligible regarding the total

ize of the function after the minification process. Another disadvantage

f this strategy is that it can affect the loading time of the application,

n case of having a large number of false positives. However, these false

ositives could be removed by the developer in subsequent bundles by

ndicating to UFFRemover to not remove these UFFs . An example of the

esulting code is shown below, in which functions toANSI and toEBCDIC

re emptied: 
uture. 
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15 https://github.com/hcvazquez/UFFRemover. 
16 
A special case of UFFs found dynamically are those functions being

eclared inside the scope of an UFF . Nested functions declared in an

FF are also UFFs . Nested functions can be completely removed, but the

FF that contains the nested functions should be emptied. 

The output of this activity is the source code of all required modules

ptimized by removing the bodies of detected UFFs . As described later

n, removing UFFs by simply emptying them is practical, easy to imple-

ent, and cope with all the reflection mechanisms used in our large set

f studied applications. 

. Evaluation 

In this section, we present an empirical analysis about UFFs in JS-

pplications. First, we describe the research questions (4.1) . Second, we

ntroduce the target applications (4.2) . Third, we analyze the number of

FFs in the applications (4.3) . Fourth, we present the results of apply-

ng our removal strategy on the UFFs (4.4) . Fifth, we present a qualitative

tudy with 10 JSdevelopers that employed our approach in their own

pplications (4.6) . Finally, we discuss the threats to validity of our study

4.7) . 

.1. Research questions 

In order to understand the phenomenon of UFFs and to evaluate our

pproach, we formulate two research questions: 

• RQ1: What is the number of UFFs in JS applications? 

• RQ2: How much can an application source code be reduced, if its

UFFs are removed with our approach? 

The goal behind these questions is to determine the applicability of

ur approach. 

.2. Target applications 

We selected 22 JS applications. Each application must meet the fol-

owing conditions: 

• It must be open-source. 

• It is runnable in a Web browser. 

• Test coverage of the functions of the application must be greater than

85%. This is because, in order to generate execution traces, we will

rely on the unit tests shipped with the applications. We think that
24 
using tests for this task instead of interacting with the applications

in the production environment, will allow others to reproduce our

experiments. Along this line, it is important to count with a high

coverage of tests to ensure an application coverage as complete as

possible. 

• It must depend on at least one library. 

• It must have information about how to compile it and run its tests. 

Table 1 lists the set of applications and their main characteristics.

he table contains all the software versions to let the interested reader

eproduce our findings. Additionally, the implementation of our ap-

roach is available for download. 15 

Table 1 shows not only the direct libraries on which each applica-

ion depends but also the indirect dependencies being generated by the

irect dependencies (all the libraries resulting from these dependencies

re part of the bundle). For instance, while geojsonhint only depends di-

ectly on 5 libraries, geojsonhint indirectly depends on 19 libraries. Thus,

eojsonhint depends on a total of 24 libraries. 

Another interesting fact from Table 1 is the percentage of Lines of

ode (LOC) from the bundle (no blank or comment lines) that belongs

o dependent libraries. While the total number of LOC of all bundles

s 336,983, for which 158,695 belong to dependent libraries (47.09%)

 Something similar happens with the number of functions. A total of

9,586 functions are defined in the bundles, but 10,063 of them be-

ong to libraries (51.38%). Thus, since the incidence of libraries in

he bundles is large, it is important to analyze the functions that be-

ong to dependent libraries for removing unnecessary functions. Finally,

able 1 also reports for each application the size of the minified bundle.

n order to create a baseline to compare the different applications, we

sed Browserify to bundle the JSfiles and Uglify 16 to minify the bun-

les. That is, the bundle sizes reported on Table 1 are already minified.

hus, our results (cf Section 4.3 ) show the improvement regarding the

xisting static analysis techniques (i.e. minifiers). 

.3. UFF identification 

In order to identify the UFFs of the applications using our approach,

e followed 7 steps for each application: 
http://lisperator.net/uglifyjs/ . 

http://lisperator.net/uglifyjs/
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Table 1 

Applications used in our study. 

Application Version Test coverage Direct 

dependencies 

Indirect 

dependencies 

Bundle LOC Dependencies 

LOC in bundle 

#Functions in 

bundle 

#Functions 

only in 

dependencies 

in bundle 

Minified 

bundled size 

(bytes) 

angular- 

countdown 

1.2.1 100% 2 0 24,094 23,600 1219 1168 136,697 

assert-x 1.2.18 89% 6 56 5652 5239 328 306 46,411 

backbone- 

tableview 

1.0.5 100% 4 1 11,350 7770 978 916 136,054 

Chart.js 2.1.4 91% 2 3 13,728 6394 1044 447 187,074 

chomsky 1.0.8 90% 4 3 20,029 15,530 2064 1643 242,023 

easystarjs 0.3.0 100% 1 0 916 318 72 31 8,769 

escodegen 1.8.1 97% 5 7 4946 3714 370 196 99,161 

escope 3.6.0 90% 4 8 7565 3125 604 220 97,853 

geojsonhint 2.0.0 97% 5 19 2022 1097 109 33 30,801 

mathjs 3.5.1 96% 5 0 50,885 6841 2865 281 507,702 

messy 6.11.0 92% 5 2 22,405 8653 1069 504 441,294 

mochawesome 1.5.2 100% 12 15 11,255 11,077 936 920 154,656 

p5 0.5.3 100% 3 44 34,985 8585 1132 307 281,130 

pixi.js 4.0.1 86% 8 73 26,527 4,043 1402 211 300,256 

teoria 2.2.1 86% 5 2 1766 409 118 11 26,688 

transform-pouch 1.3.3 90% 8 48 1467 970 214 134 27,899 

underscore.string 3.3.4 100% 2 0 1600 245 170 11 31,935 

unexpected-http 5.6.0 87% 3 13 39,037 25,857 1923 1516 584,046 

unexpected-messy 6.1.2 92% 4 10 36,942 21,725 1766 1114 557,454 

unified 5.1.0 100% 8 4 2040 722 161 54 29,639 

virtual-dom 2.1.1 100% 8 6 1565 150 112 8 31,181 

workfront-api 1.3.4 89% 3 6 16,207 2631 930 311 226,744 

Total 336,983 158,695 19,586 10,063 4,185,074 
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Fig. 6. Results UFFs identification and removal. 
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1. Download the source code of the application (this step usually

requires to download all the dependencies). 

2. Create the bundle from the source code using Browserify and

Uglify. 

3. Run all the tests and verify that they all pass. 

4. Run the Identification of Required Modules of our approach. 

5. Run the Instrumentation of Required Modules of our approach. 

6. Run all the tests to log the traces using the instrumented code. 

7. Run the Dynamic UFF Detection activity. 

When instrumenting the source code and running the Dynamic

FF Detection activity, we found a total of 7021 UFFs in the bundles

 Table 2 ). That is, 69.77% of the functions in the bundle that belong to

ependent libraries are UFFs (35.85% of the total number of functions

n the bundle) . Moreover, these UFFs are responsible for a high number

f lines of code of the bundle. Specifically, UFFs represent 54.35%

 = 86,249) of the LOC in the bundle that belongs to dependent modules

25.59% of the total number of LOCs in the bundle). 

To answer RQ1, we plotted the percentages of the number of UFFs

ith respect to the total number of functions of each bundle ( Fig. 6 ). The

edian percentage is 27.56% and the inter-quartile range is 14.69%-

7.17% (i.e. 50% of the applications analyzed are in this range). Some

f the applications are outliers such as teoria and virtual-dom that only

eport a 1.7% of UFFs . After manually analyzing their source code we

ound that the low percentage of UFFs is due to the fact that both appli-

ations depend on very few functions ( teoria has in its bundle only 11

unctions that belong to dependencies and virtual-dom has only 8 func-

ions). Moreover, we tested for a correlation between the percentage of

unctions in the bundle belonging to dependencies and the percentage

f UFFs . In order to run a statistical test, we tested the data for normality

sing the Shapiro–Wilks test and concluded that the data deviates from

ormality ( p -value = 0.015). Thus, we used the Spearman’s correlation,

nd we obtained a value of 0.92 ( p -value = 4.005e-6). Thus, the per-

entage of UFFs is directly correlated with the percentage of functions

f depending libraries. The greater the percentage of such functions in

he bundle, the greater the percentages of UFFs . This result seems to

mply that the use of libraries in JS applications increments the unused
25 
ode, justifying the need of removing UFFs . As we mention earlier (see

ection 2.2 ), unused code can increase the downloading time of a web-

ite and can negatively impact on user experience. 

.4. UFF removal 

To evaluate the removal activity of our approach we followed a series

f steps for all the UFFs previously identified: 
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Table 2 

UFFs identified and removed. 

Application #UFFs 

detected 

dynamically 

LOC of UFFs 

detected 

dynamically 

#UFFs 

removed 

#UFFs 

emptied 

LOC of UFFs 

removed/ emptied 

Minified improved 

bundle size (bytes) 

% of reduction 

angular- 

countdown 

856 7237 471 385 6852 57,680 57.80% 

assert-x 90 528 17 73 455 37,929 18.28% 

backbone- 

tableview 

632 5307 163 469 4838 68,551 49.61% 

Chart.js 289 1843 4 285 1558 160,916 13.98% 

chomsky 1,054 6532 94 960 5572 149,236 38.34% 

easystarjs 19 155 1 18 137 7358 16.09% 

escodegen 107 1139 25 82 1057 81,392 17.92% 

escope 201 2219 73 128 2091 70,352 28.10% 

geojsonhint 14 102 0 14 88 28,628 7.05% 

mathjs 72 702 1 71 631 500,731 1.37% 

messy 361 12,696 174 187 12,509 149,289 66.17% 

mochawesome 631 5537 203 428 5109 73,690 52.35% 

p5 301 4965 210 91 4874 207,024 26.36% 

pixi.js 206 2298 26 180 2118 269,026 10.40% 

teoria 2 4 0 2 2 26,605 0.31% 

transform-pouch 78 363 41 37 326 20,454 26.69% 

underscore.string 6 40 2 4 36 31,277 2.06% 

unexpected-http 993 16,395 211 782 15,613 232,836 60.13% 

unexpected-messy 833 16,621 255 578 16,043 215,361 61.37% 

unified 25 129 5 20 109 26,826 9.49% 

virtual-dom 2 8 0 2 6 31,058 0.39% 

workfront-api 249 1429 166 83 1346 211,619 6.67% 
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17 The source code can be found at https://github.com/hcvazquez/ExperimentExample 

. 
18 The source code can be found at https://github.com/hcvazquez/BarChartExample 

. 
1. Run the Removal of UFF of our approach to optimize the applica-

tion. 

2. Create the bundle from the optimized source code using the in-

structions and tools provided by the application. 

3. Run all the tests and verify that they all pass. 

4. Test the optimized application with a third-party application that

uses the analyzed application. To accomplish this step, we man-

ually replace (in the third-party application) the original version

of the analyzed application for its reduced version. Then, the tests

of the third-party application are run. 

Table 2 shows the results of our experiment. The 7021 UFFs were

emoved or emptied by our approach. Specifically, 30.5% of the UFFs

 = 2142) were completely removed while the bodies of 69.5% of them

 = 4879) were emptied. This procedure allows us to remove a total of

1,370 lines of code from the bundles. This corresponds to 94.34% of

he source code identified as UFF . Moreover, after analyzing the impact

f the UFF removal in the minified version of the bundles, we found that

he inter-quartile range of reduction is 7.66%–46.80% with a median of

7.99% ( Fig. 6 ). 

Some applications are above this range, such as the case of Messy that

as reduced by 66.17% while its percentage of UFFs was only 33.77%.

fter carefully analyzing the bundle of Messy we found that this high

eduction was accidental since the UFFs removed were, in general, long

unctions. 

Also, to understand the relationship between the percentage of UFFs

nd the reduction in the minified bundle after removing them. In or-

er to run a statistical test, we tested the data for normality using the

hapiro–Wilks test and concluded that the data deviates from normality

 p -value = 0.005). Thus, we used the Spearman’s correlation, and we

btained a value of 0.91 ( p -value = 3.734e-6). We found that there ex-

sts a strong correlation of 0.91 between these factors. Thus, the greater

he percentages of UFFs , the larger the bundle reductions. 

Since the size of the bundles are reduced, these reductions should

mprove the loading time of web-pages using them. While an empirical

xperimentation of loading times is out of the scope of this paper, we

onducted a small sanity check to test the download time. First, we cre-
26 
ted a simple web-page 17 that uses the Math.js application. Specifically,

he web-page prints a number of mathematical operations using a sub-

et of the functions implemented in Math.js . Also, we used an example

f a bar chart taken from the website of Chart.js . 18 Second, we applied

ur approach to the minified Math.js and Chart.js files to obtain the op-

imized versions of them. We obtained the execution traces by simply

xecuting the web-pages. In the case of Math.js , we obtained a reduction

f 36.67% (499Kb vs 316Kb). In the case of Chart.js , the reduction was

round 10.1% (209Kb vs 188Kb). Third, we compared the download

ime of the web-pages using the original and the optimized bundles. We

osted the web pages locally. To reduce the bias introduced by the la-

ency of the http server, we loaded 10 times the web-pages with each

undle. In the case of Math.js , we found an average reduction of 9% of

he total download time (13.64% when only the bundle downloading

ime is considered) while in the case of Chart.js , the reduction was of

.5%. Thus, both web-pages experienced reductions in the download

ime. However, given the complexity of these kind of analysis a deeper

mpirical analysis should be conducted in future works to analyze the

oading time of websites. These analysis are complex because a num-

er of variables can affect the loading time: download time, parse time,

etwork bandwidth, JSinterpreter, among others [9] . 

In order to assure that our removal strategy does not affect the be-

avior of the applications, we followed a two-step validation process.

irst, we ran again the tests of the application to check that they still

assed. Second, in third-party applications we replaced the bundles pro-

ided by the application authors with our trimmed and optimized bun-

le. Our goal with the first validation was to conduct a sanity check

o determine if the removal of UFFs does not produce compilation or

xecution errors. The goal of the second validation was to check if all

ests passed after optimizing the bundles. We conducted this process in

he 22 applications and all the tests passed. Moreover, we checked the

umber of times that our lazy load mechanism was executed and no call

as found. 



H.C. Vázquez, A. Bergel and S. Vidal et al. Information and Software Technology 107 (2019) 18–29 

Table 3 

Validation with third-party applications. 

Application 3rd application % of coverage 

Messy unexpected-messy 93 

unexpected-http 100 

unexpected-mitm 90 

Mathjs loess 91 

dn2a 74 

dext 92 

pullquoter 85 

Transform-pouch crypto-pouch 100 

pouch-box 81 

Escope derequire 86 

eslint 100 

fancyscript 96 

isogrammify 100 

Escodegen browjadify 100 

espower 100 

esreflect 100 
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Fig. 7. Relationship between false positives and coverage for Chartjs-color . 
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19 The reduction is made by randomly selecting and removing a number of unit 

tests. 
20 The tasks and questions can be found at https://goo.gl/forms/ 

HUedb3sswJQloNOi1 . 
If the optimized application is intended to be used by third-party ap-

lications, those third-party applications could use some functions de-

ned in a dependency of the optimized application. Along this line, the

oal of our second validation is to analyze if third-party applications

o not change their behavior after replacing the original application

y the application optimized by our approach. This validation is chal-

enging because for each optimized application we need to find several

hird-party applications that use the same version of the optimized ap-

lication. Moreover, the third-party applications must have a high test

overage. For this reason, we conducted this validation with only 5 ap-

lications (we could not find other applications that meets both criteria).

able 3 shows the applications and the third-party applications that use

hem. After replacing the original library code with the optimized one

e did not obtain errors on the tests nor were lazy loads detected. How-

ver, an exception occurred when executing unexpected-mitm to test the

eductions in Messy . The problem was that Messy uses the underscore

ibrary, thus, when analyzing Messy our approach removed UFFs from

nderscore . At the same time, unexpected-mitm also uses the underscore

ibrary. Therefore, some UFFs in Messy are not UFFs in unexpected-mitm

nd as a result an error occurred. However, what we want to show is that

essy does not use those functions during its execution in the context

f a library that depends on it. In this way, we separate the underscore

ibrary during the test, using an optimized version for Messy and one

ithout optimization for unexpected-mitm . Consequently, the tests were

uccessful, showing that Messy does not use these functions in the con-

ext of unexpected-mitm . 

After this analysis, we can answer RQ2 by saying that the applica-

ions are reduced with a median of 18% after applying our approach. 

.5. Impact of low test coverage 

Our approach uses execution traces to identify UFFs . The question

hat naturally arises is how the coverage of the execution traces can

ffect the effectiveness of the approach. We hypothesize that the per-

entage of coverage of the execution traces inversely correlates to the

umber of false positives identified by our approach. That is, the lower

he coverage, the higher the number of false positives. However, these

alse positives should not variate the program behavior because of the

ynamic loading strategy of our approach. To answer this question, we

nalyzed chartjs-color , which is a dependency of Chart.js ( Fig. 1 ). We

elected Chartjs-color because it has a high test coverage (93.44%) and

lso has dependencies (2 direct dependencies and 1 indirect one). With

he goal of analyzing the number of false positives, and possible execu-

ion problems related to them, we tested our approach in Chartjs-color

ith different test coverages. We applied 4 steps, namely: 

1. Follow steps 1 to 7 described in Section 4.3 for Chartjs-color . 
27 
2. Follow steps 1 to 4 described in Section 4.4 for Chartjs-color . 

3. Run all the tests of Chart.js using the optimized version of Chartjs-

color and verify the existence of false positives. 

4. Randomly reduce the test coverage 19 of Chartjs-color and re-start

the process (Step 1). 

The results of the experiment are depicted in Fig. 7 . Our approach

ound 34 UFFs in Chartjs-color after generating the execution traces using

he original set of tests (93.44% of coverage). As expected, the number

f false positives (detected through the execution of lazy loads) increases

s test coverage decreases. While running the experiment, we found the

rst false positive after reducing the test coverage by 31.5%. We could

ot find any odd behavior during the execution of the tests. That is, when

 false positive UFF was invoked, the dynamic loading strategy loaded

he removed function. 

As it can be seen in Fig. 7 , the percentage of coverage of the execution

races is directly related to the effectiveness of the approach. For this

eason, developers should be careful when providing traces as inputs

or our approach. A possible way to obtain a set of traces is through

he analysis of the interaction of users with the application. Since we so

ar analyzed only one project, the results cannot be generalized to other

rojects. Similar experiments with other applications are necessary as

uture work. 

.6. Study with developers 

To sense the opinion of JSdevelopers about our approach, we con-

ucted a qualitative study with industrial developers. To this end, we

nvited industrial developers to complete an on-line questionnaire about

FFRemover, our tool to detect and remove UFFs . The invitations were

ent via e-mail. The participants received the questionnaire via Google

orms, 20 which provided: detailed instructions to do the experiment, a

ackground survey, and a number of tasks to be performed by each par-

icipant. A total of 10 developers from different companies participated

n the study, most of them (80%) had 5 or more years of programming

xperience. 

The study was composed of two tasks. In the first task, each partici-

ant was asked to answer questions about their background in program-

ing and their opinion about identifying and removing unused parts of

pplications. In the second task, each developer was given a short intro-

uction to the notion of UFFs and UFFRemover. Then, developers were

sked to use the UFFRemover on their own applications and report their

esults. We provided developers with a detailed tutorial about our tool.

https://goo.gl/forms/HUedb3sswJQloNOi1
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Fig. 8. Harmfulness of UFFs for maintainability and performance. 

Fig. 9. Usefulness of the approach. 
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t the end of this task, we asked each participant to fill in a post-task

uestionnaire about UFFs and UFFRemover. 

Participants were allowed to spend as much time as they need to

omplete the tasks. Also, we allowed participants to leave optional com-

ents for each task. Next, we analyze the results of the tasks in detail. 21 

.6.1. Task 1: Developers opinion about unused code 

During the first task, developers were asked about their background

n programming and their opinion about unused parts of a JSapplication.

egarding the latter, we asked the following questions in which each

articipant had to answer using a Likert scale ranging from 1 to 5: 

1. How important do you think is the identification of parts of an

application that are not used? (1 = unimportant; 5 = very impor-

tant) 

2. How often do you identify unused parts of your application?

(1 = almost never; 5 = very often) 

The intention of both questions was to analyze if developers were

ware of detecting fragments of unused code. In the case of question #1,

0% of the developers answered that the identification of not used parts

s important or very important (2 developers answered 3, 3 developers

nswered 4, and 5 developers answered 5). Moreover, some developers

ustified their answers by relating this importance to the performance

f the application. For example, some developers said “It’s important to

eep a clean code-block, and to make the app as light as possible for

he user ”, “... it downgrades the performance of the application in the

ront-end. In the back-end it can affect the maintainability and readabil-

ty of the code ”, “... in web and mobile environments, the size of apps

s important for performance ”, “Identifying unused code from libraries

ay reduce network consumption and, thus, produce faster load times ”.

However, when answering question #2, most developers answered

hat they do not often identify unused parts of the applications. Specif-

cally, 8 developers answered between 1 and 3 (1 developer answered

, 3 developers answered 2, 4 developers answered 3, and 2 develop-

rs answered 5). In this context, we think that developers could benefit

rom our approach. 

.6.2. Task 2: Results of using UFF Remover 

In the second task, we asked developers to apply our approach to

n application of their choice. After finishing this activity, we asked the

ollowing questions in which each participant had to answer using a

ikert scale ranging from 1 to 5: 

1. How harmful do you think are the UFFs for the maintainability

of the system? (1 = harmless; 5 = harmful) 

2. How harmful do you think are the UFFs for the performance of

the system? (1 = harmless; 5 = harmful) 

3. How useful do you consider the tool used in the experiment?

(1 = unhelpful; 5 = very useful) 

Fig. 8 shows a bar chart of the answers of the developer for ques-

ions #1 and #2. Regarding question #1, 7 of 10 developers answered

etween 1 and 3. The median of these answers is 3 which means that

evelopers are uncertain about the harmfulness of UFFs in the maintain-

bility of the applications. 

Regarding question #2, 1 developer answered 1, 8 of 10 developers

nswered 4 or 5. The median of these answers is 4 meaning that devel-

pers estimated that UFFs can harm the performance. Thus, developers

end to agree that UFFs are not harmful for maintenance but that they

re harmful for performance. 

Finally, we analyzed how useful the developers consider our ap-

roach (question #3). A total of 9 developers answered 4 or 5

1 = unhelpful; 5 = very useful). Fig. 9 shows a bar chart with the an-

wers of developers. These results indicate that participants found the

pproach implemented by UFFRemover useful for removing UFFs . 
21 All the results can be found at https://goo.gl/ZHJGF5 . 
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28 
.7. Threats to validity 

The validity of our results depends on factors in the experimental

ettings. Along this line, we analyze four kinds of validity threats [10] . 

.7.1. Conclusion validity 

This threat concerns the statistical analysis of the results. The appli-

ations analyzed in this work had to satisfy a number of conditions (see

ection 4.2 ) that could not represent the situation of most JS applica-

ions. However, we argue that the statistical relevance of the results is

ppropriate given the number of applications used in the experiment. 

.7.2. Internal validity 

This threat concerns causes that can affect the independent variable

f the experiment without the researcher’s knowledge. The percentage

f tests coverage is an important factor in our study. However, the odds

f having false positives with partial test coverage should be consid-

red, because important calls to library functions could go undetected.

or example, a programmer might have forgotten to test the code that

eals with a particular user-agent or the particular code for a certain

latform. We mitigated this threat by selecting applications with a high

est coverage ( > 85%). Also, it is important to remark that the tests are a

echanism to obtain execution traces, but these traces can alternatively

e obtained by other means (e.g. interacting with the application in the

roduction environment). 

.7.3. Construct validity 

It is concerned with the design of the experiment and the behavior

f the subjects. Our main concern is that the execution traces of an ap-

lication could not encompass all the possible uses of that application.

hus, some functions could be identified as UFFs when they are not. To

https://goo.gl/ZHJGF5
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itigate this threat we analyzed the reduced bundle of the applications

ith third-party applications that use them ( Section 4.4 ). Also, it is pos-

ible that some applications were designed only for use in conjunction

ith other applications that may use some function identified as UFF

n the context of the first application. To deal with this threat, we only

elected libraries providing a bundle creation process for independent

sage. 

.7.4. External validity 

It is concerned with having a subject that is not representative of

he population. We argue that the number of applications analyzed in

he study is large enough to avoid this threat, so the results can be gen-

ralized to other JS applications. To mitigate this threat we selected

pplications with different sizes, purposes and domains. 

. Related work 

As far as we are aware of, no empirical study has been conducted

n the analysis of unused library functions in JS developments. How-

ver, some works have identified relevant issues in the analysis of JS

pplications. 

Since programmers started using JS for writing complex applica-

ions, the need for better tool support during development increased

11] . In this context, the main efforts have focused on having a static

nalysis infrastructure for the full language as defined in the ECMAScript

tandard. Jensen et al. [12,13] proposed an approach to design a full-

lown JS program analyzer. This analyzer can be incorporated into an

DE to supply on-the-fly error detection as well as support for auto-

ompletion and documentation hints. There are works [14–16] about

nderstanding and modeling the program dataflow and the interaction

etween JS and the host environment such as the browser. Other works

7,17] focus on the construction of approximated call graphs between

unctions. These approaches work well in IDEs, where the precision of

he analysis can be relegated to obtain a high response speed. Unfortu-

ately in works that need more precision these studies have difficulties

ealing with the dynamic behavior of JS applications. Richards et al.

8] perform an exhaustive study of the dynamic behavior of JS. The

tudy identifies the frequent use of the eval function as one of the main

auses that tends to change the semantics of the application at runtime.

ard and Mesbah [18] propose a tool that detect dead code in JSus-

ng dynamic analysis. However, they do not analyze the libraries of an

pplication but the application itself. 

In industry, bundling tools as Browserify and Webpack are able to

educe the source code discarding modules that are not explicitly re-

uired by the program. However these tool do not remove unused func-

ions from used modules. A recent approach named tree-shaking, im-

lemented by the Rollup 22 tool, can delete function from modules that

re not imported through the ECMA6 import/export syntax. However,

ollup does not remove things like unused functions from modules that

re not declared with the export syntax, and many times it is forced

o assume a function used in order to ensure that the resulting code is

orrect. A key feature of our approach is that it helps in obtaining in-

ormation about the function executions at runtime. This information

llows us to eliminate unused functions regardless of whether the mod-

les are used, yielding reductions in the final size of the application. 

. Conclusion and future work 

Removing unused foreign functions from JS bundles helps reduce

heir size. We have proposed an approach to detect and remove UFFs
22 http://rollupjs.org/ . 

29 
uring the bundling process. We have empirically determined for a set

f 22 JS applications that around 70% of the functions that belong to

ependencies are UFFs . Moreover, we found that around 26% of the

undle sizes can be reduced after applying our approach. We also per-

ormed a qualitative study with 10 industrial developers that confirmed

he usefulness of the approach. 

Although promising, these results are still preliminary and subject

o the limitations of our dynamic analysis techniques based on the tests

rovided by the JS applications. We believe that an ideal approach

hould integrate both static and dynamic analyses of the bundles as part

f the JS development environment. Furthermore, we have looked so far

t UFFs in libraries that are dependent on the main application. How-

ver, if we follow the dependency chain of those libraries, we speculate

hat UFFs can also occur in other libraries. For instance, in Fig. 1 , we

hould not only check for UFFs in color-convert regarding to Chart.js but

lso check for UFFs in color-convert regarding to chartjs-color . 

As future work we plan to: 

• Apply our approach in websites to analyze their loading times with

bundles in which UFFs have been removed. 

• Integrate the dynamic analysis traces with static analysis to improve

the UFFs detection performance. 

• Identify further UFFs by analyzing the dependency chain of libraries.
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