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ABSTRACT
Optimizing the Java Virtual Machine (JVM) options in order to
get the best performance out of a program for production is a
challenging and time-consuming task. HotSpot, the Oracle’s open-
source Java VM implementation offers more than 500 options, called
flags, that can be used to tune the JVM’s compiler, garbage collector
(GC), heap size and much more. In addition to being numerous,
these flags are sometimes poorly documented and create a need of
benchmarking to ensure that the flags and their associated values
deliver the best performance and stability for a particular program
to execute.

Auto-tuning approaches have already been proposed in order to
mitigate this burden. However, in spite of increasingly sophisticated
search techniques allowing for powerful optimizations, these ap-
proaches take little account of the underlying complexities of JVM
flags. Indeed, dependencies and incompatibilities between flags
are non-trivial to express, which if not taken into account may
lead to invalid or spurious flag configurations that should not be
considered by the auto-tuner.

In this paper, we propose a novel model, inspired by the feature
model used in Software Product Line, which takes the complexity
of JVM’s flags into account. We then demonstrate the usefulness
of this model, using it as an input of a Genetic Algorithm (GA) to
optimize the execution times of DaCapo Benchmarks.
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1 INTRODUCTION
Oracle’s HotSpot JVM latest release, distributed with Java SE 15,
provide a list of 528 flags considered as final (i.e., excluding experi-
mental, diagnostic and others specifics set of flags) via the command
java -XX:+PrintFlagsFinal -version. Hundreds of these flags
can be used to optimize the performance of the JVM by tuning the
behaviors of various internal processes including memory man-
agement, garbage collection process, and compiler behaviors. For
example, the -Xmx2G flags set the maximum size of the heap to 2 GB
of RAM, whereas the -XX:+UseParallelGC flags specify that the
JVM should use the parallel garbage collector.

Although in general, the default parameters of the JVM are
enough to run an application, the task becomes more complicated
when practictioners want to optimize the performance of their
program. Indeed, the large quantity of flags can take a plethora of
values (boolean, integrer or string) which must be adapted to the
application and the system that runs it. A great deal of expertise is
therefore required, especially since not all the options are properly
documented in the official documentation, sometimes requiring to
dive into the source code of the JVM [9] or other experts website
to understand them properly.

An example of such configuration done manually can be found
in Listing 1. This popular configuration for a Minecraft game server
aims at optimizing the use of the memory and the garbage collector.
According to its author, it is “After many weeks of studying the
JVM, Flags, and testing various combinations [...] the result of a
ton of effort and results of seeing it in production on various server
sizes, plugin lists and server types” [6].

Previous approaches have already been proposed to automatize
this process of optimizations as showed in Section 2. However, their
mechanisms to handle the dependencies and incompatibilities of
the various flags are limited. As a consequence, the search space of
flags is not optimal which makes harder and more time consuming
the discovery of the best configurations of flags.

Consider Listing 1 as the result of a manual flag tuning of a
Minecraft server. The presented configuration of the JVM is com-
plex, for example, the -XX:G1HeapRegionSize=8M flags is only
valid because the -XX:+UseG1GC is also used in the same configu-
ration. Also the -XX:+UseParallelGC flag (as well as all the flags
who need it as a prerequisite) could not be used in this configu-
ration since it is conflicting with -XX:+UseG1GC. Such restrictions
are not apparent in the configuration and therefore solely rely on a
deep and necessary knowledge of the performance engineer.

Previous studies [9, 12] also present results for OpenJDK7 or
OpenJDK8 which are now outdated. We expect our work to allow
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for replicating previous results from the performance engineering
community but on a newer JVM.
Our approach. To solve this problem, we propose to organize the
flags of the JVM as it is done for features in feature model. We then
use this convenient model as an input for a genetic algorithm capa-
ble of interpreting its specificities. We have experimented our ap-
proach on several benchmarks of the DaCapo benchmark suite [2].
Our genetic algorithm determined a list of options that improve
some benchmark executions by up to 23% when compared to the
default parameters of the JVM.
java −Xms10G −Xmx10G −XX :+ UseG1GC −XX :+ AlwaysPreTouch
−XX: MaxGCPauseMillis =200 −XX :+ UnlockExperimentalVMOptions
−XX :+ DisableExplicitGC −XX :+ ParallelRefProcEnabled
−XX: G1NewSizePercent =30 −XX: G1MaxNewSizePercent =40
−XX: G1HeapRegionSize =8M −XX: G1ReservePercent =20
−XX: G1HeapWastePercent =5 −XX: G1MixedGCCountTarget =4
−XX: InitiatingHeapOccupancyPercent =15
−XX: G1MixedGCLiveThresholdPercent =90
−XX: G1RSetUpdatingPauseTimePercent =5 −XX: SurvivorRatio =32
−XX :+ PerfDisableSharedMem −XX: MaxTenuringThreshold =1
−Dusing . aikars . flags = https :// mcflags .emc.gs
−Daikars .new. flags =true −jar paperclip .jar nogui

Listing 1: Example of Hotspot Flags recommended for a
Minecraft Server

Outline. This paper is structured as follows. Section 2 gives a brief
overview of the related work. Section 3 describes our approach to
employ a feature model and a genetic algorithm to optimize the
JVM configuration for a particular software execution. Section 4
details the experiments we conducted. Section 5 concludes and
outlines our future work.

2 RELATEDWORK
A number of automatic optimization or auto-tuning approaches
have been proposed for various domains such as compilers [10],
runtime systems [16] or deep learning [5]. There is even frame-
work such as ParamILS [8] or OpenTuner [1] allowing one to build
domain-specific and customizable program autotuners.

Various works have focused on the optimizations of the JVM
flags, focusing on a subset of specialized flags carefully selected [3,
4, 11, 14, 15], thus avoid the need of modeling the dependencies
and incompatibilities between flags. Two studies [9, 12] are closely
related to our work since they tackle a wider range of flags.
Automatic tuning of GC parameters. Lengauer and Mössen-
böck [12] proposed an approach, built-on top of ParamILS [8] and
its hill climbing, to automatically optimize all GC flags available for
OpenJDK8. Theywere able to consistently improve the performance
of benchmarks of DaCapo and SPECjbb 2005. They provide an in-
depth analysis of their results, useful to guide practitioners willing
to optimize their programs. To model dependencies between flags,
they use the mechanism of conditional parameters provided by
ParamILS, which allows a flag B to be set only if a flag A has certain
values (typically when set to true). However, the authors mention
that this mechanisms may still lead to improper configurations
(called false positive), since with the hill climbing approach, the
value of the flag Bmight be set and kept between iterationswhile the
flag A has been switched to an incompatible value. ParamILS also
allows for the definition of forbidden combinations of parameters

but the authors did not mention using it. It seems impractical to use
in the case of Java flags since it requires to list all the combinations
of forbidden values ( e.g., {flagA=valueA1,flagB=valueB1,...}
), {flagA=valueA2,flagB=valueB2,...}.
HotSpot Auto-tuner. Jayasena et al. [9] proposed a similar ap-
proach named HotSpot Auto-tuner but this time considering all
the flags available in OpenJDK7 and relying on OpenTuner [1].
They were able to improve the performance of SPECjvm2008 and
DaCapo benchmarks, they found that mixing all types of flags
(i.e., not only using a subset of GC or compiler-related flags) pro-
vided the best results. Interestingly, with the Dacapo Benchmark
the performance worsen with the subset of GC flags, contrary
to what was achieved by Lengauer and Mössenböck [12]. By de-
fault, OpenTuner proposes a more sophisticated approach than
ParamILS to explore the search space, relying on an AUC Ban-
dit meta technique which combines greedy mutation, differential
evolution, and two hill climber algorithms. However it lacks mech-
anisms to handle dependencies and incompatibilities between flags,
therefore reducing the effectiveness of the tuning process. To over-
come this problem, the authors propose to use a hierarchy of flags
which groups together alternative flags (e.g., -XX:+UseParallelGC
and -XX:+UseG1GC). Although this approach helps to explore the
search space more rapidly, it is still prone to generate incorrect
configurations of flags. Indeed, it cannot express prerequesite be-
tween flags, e.g., -XX:UseAdaptiveSizePolicy is only valid with
-XX:+UseParallelGC or -XX:+UseG1GC but not the alternatives
GC.

3 MODELING FLAGS USING FEATURES AND
GENETIC ALGORITHM

In order to solve these problems of dependencies and incompatibil-
ities between flags, we propose a model of the flags inspired by a
feature model.
Feature model. Figure 1 describes a feature model of the JVM flags
related to the garbage collector (GC). Our feature model also relies
on a hierarchy (as with HotSpot Auto-tuner), but it offers a better
granularity and flexibility by supporting:

• Alternative between flags, e.g., the choice of a unique garbage
collector;

• Combination of flags, e.g., Uncommit and CollectionInterval
could be both used in some configurations;

• Mandatory or optional flags, e.g., a garbage collector must be
used, in most cases a default value is set by the JVM, whereas
Gensize flags are not always required;

• Constraints between flags using logical operators such as
implies ( =⇒ ), and (∧), or (∨) and negation (¬). For exam-
ple, the ZGC is incompatible with AdaptiveSizePolicy and
SurvivorRatio since ZGC uses only one generation for the
whole heap.

Flag optimization. We have chosen to experiment the potential
of this model with a Genetic Algorithm (GA). GA is inspired by
natural selection, in its simple form it consists of: genes representing
properties or values, individual corresponding to a chain of genes
and generations which regroups a number of individuals. The first
generation of individuals are created from the random selection



Figure 1: Partial Feature Model of flags related to garbage collector

of values for each gene. Then, the performance of each individual
is evaluated by calculating an objective function. Subsequently,
the worst performers of the generation are then discarded and the
new generation is obtained by creating new individuals from the
crossover of the gene of the best performing individuals. After this,
a mutation step is usually performed on some of the new individuals
to add variability to the population.

We decided to use GA tomodel flags as follows: a gene represents
a flag and the gene value represents the value of the flag (e.g.,
boolean, integer or decimal). An individual in our GA is an ordered
collection of flags. The objective function takes as argument a
collection of flags and returns a numerical fitness value, calculated
by measuring the running time of a program launched with the
provided set of flags. In addition, to the necessity of indicating the
type and range of values that the flags can take, we extended the
sequence of genes with a set of control genes as a means to express
the constraints of our particular model.

The control genes allow us to form groups of alternate genes,
when the control gene is active then a variant of the gene is chosen
(e.g., a variant of GC). They are therefore a way to implement al-
ternative of the feature model (see Figure 1), whereas combination
of flags is simply the chain of genes. Futhermore, to implement
the other constraints of our model, when a gene is selected it may
disable another gene (regular or control) to express incompatibil-
ities between flags. Similarly, a gene may enable other genes to
express the implies andmandatory relationships of our model. Since
the JVM often provides default values for most of the mandatory
relation, this relation between gene is sometimes implicit.

For example, considering the model of Figure 1, a control gene
represents the alternative between GarbageCollectors. If SerialGC
is selected for activation during the creation of an individual then
AdaptiveSizePolicy is automatically disabled, whereras SurvivorRa-
tio is enabled.

4 EXPERIMENTS
We decided to experiment our approach on the DaCapo bench-
marks [2] version 9.12 which is commonly used for Java benchmark-
ing, especially in efforts related to ours [9, 12]. From the various
benchmarks offered by DaCapo, only avrora, fop, jython, luindex,
lusearch, lusearch-fix, pmd and xalan are used. Those not mentioned
present stability problems with some flags (including some default
flags).

Our goal of our experiment is to assess whether our approach
is able to minimize the execution time of the benchmarks. Since it
is a work-in-progress, so far, we have modeled 70 of the 528 flags,
focusing on GC flags. Our future work contemplates incorporating
the remaining flags. The genetic algorithm is run with a population
of 32 individuals along ten generations. The 16 least performing
individuals are discarded to generate the next generation using
crossover of individuals. Moreover when a gene is activated we
kept the default value proposed by the JVM in 20% of the cases,
otherwise a random value is generated according to the min, max
and step values provided in a JSON file.

The experimentwas runwith the following configuration: Hotspot
of Java SE 15.0.2 onWindows 10 Professional (64 bits) with an AMD
Ryzen 2600X 3.6GHZ (6 cores) and 16 GB of RAM memory.

During the execution of GA, for each individual the benchmark
was run twice after the Dacapo warmup phase, and the average of
these two runs was used to rank individuals for the next generation.
At the end of the 10 generations, the best performing individual is
considered as our optimized set of flags.

We decided to compare its performance with the benchmark
executed with the default options of the JVM. In order to obtain
rigorous comparison between the two configurations of flags, each
of the configurations (optimized and default) was executed 30 times
after warmup as recommended in previous work [7].

Table 1 gives the results of the experiments. In all cases our
approach was able to reduce the execution time of the benchmark.
For all benchmarks, an independent samples t-test gave us a two-
tailed P value of less than 0.0001, confirming that the differences
are statistically significant. We can therefore conclude that in our



Benchmark Average time (ms) Percentage of
Improvement

Cohen’s d
effect sizeDefault Optimized

avrora 3552.87 3506.23 1.31% 3.75 (h)
fop 198.07 151.67 23.43% 4.50 (h)
jython 2778.07 2690.70 3.14% 3.02 (h)
luindex 1460.17 1434.63 1.75% 1.08 (l)
lusearch 389.57 351.50 9.77% 4.19 (h)
lusearch-fix 389.17 348.30 10.50% 4.38 (h)
pmd 1317.30 1244.37 5.54% 4.11 (h)
xalan 461.90 420.30 9.01% 1.67 (vl)

Table 1: Comparison of the execution time of the bench-
marks with and without optimization on 30 iterations. (l)
means that the effect size is large, (vl) means very large and
(h) means huge

setting, these results are not by chance, our approach is able to
reduce the benchmark execution time for all the benchmarks.

As an effort to estimate the strength of the statistical difference
we found, we use (i) the Cohen’s d effect size with a confidence 95%
confidence level and (ii) the descriptor of magnitude recommended
by Sawilowsky [13]. The benchmark luindex has the smallest effect
size but it could still be described as a large effect size, whereas xalan
is very large and the others benchmarks all have a huge effect size.
Therefore, even if the magnitude of improvements vary between
benchmarks, it is never marginal, on the contrary, the reduction of
the execution time is always noticeable. This is particularity true
for the fop benchmark with 23.43% percentage of improvements
on the average execution time. The Listing 2 shows the set of flags
selected by our approach, we can observe that the ParallelGC was
selected as well as an AdaptivePolicy and multiple flags related to
this policy. This is consistent with the model presented in Figure 1.
−XX :+ UseParallelGC −XX :+ UseAdaptiveSizePolicy
−XX:−UseAdaptiveSizeDecayMajorGCCost
−XX :+ UseAdaptiveSizePolicyWithSystemGC
−XX:−UseAdaptiveGenerationSizePolicyAtMajorCollection
−XX: AdaptiveSizePolicyCollectionCostMargin =25
−XX: AdaptiveSizePolicyInitializingSteps =25
−XX: AdaptiveSizePolicyWeight =0
−XX: AdaptiveSizeThroughPutPolicy =0
−XX: GCTimeRatio =99 −XX: MaxGCPauseMillis =150
−XX: TenuredGenerationSizeIncrement =15
−XX: TenuredGenerationSizeSupplement =80
−XX: YoungGenerationSizeIncrement =20
−XX: AdaptiveSizeDecrementScaleFactor =3
−XX:−UseDynamicNumberOfGCThreads
−XX:−UseMaximumCompactionOnSystemGC
−XX: HeapMaximumCompactionInterval =20
−XX: ParallelGCBufferWastePct =15

Listing 2: Optimized set of flags selected by our approach for
the fop benchmark

5 CONCLUSION AND FUTUREWORKS
In this paper, we proposed an approach to automatically optimize
the set of flags for a specific application running on a JVM. The
novelty of this approach is in the use of a feature model to describe
the dependencies and incompatibilities between the numerous flags
of the JVM. In addition to avoiding spurious configurations of flags,
our model can reduce the search space for an optimal solution. This
model is then used as in input of genetic algorithm, which was

consistently able to strongly improve the performance of multiple
DaCapo benchmarks.

Encouraged by these positive results, our future work includes
extending the set of flags considered by our approach and integrat-
ing it to existing frameworks of auto-tuning. This will allow us to
compare the efficiency of auto-tuner with or without our model.
Futhermore, we plan to test our approach on more benchmarks
and applications. In particular, we want to see if our approach is
capable of matching or even surpassing the performance of a set of
flags that has been manually tuned by an expert.
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