
VizRob: Effective Visualizations to Debug Robotic
Behaviors

Miguel Campusano and Alexandre Bergel
ISCLab, Department of Computer Science (DCC), University of Chile

{mcampusa,abergel}@dcc.uchile.cl

Abstract—Building and debugging robotic programs is known
to be difficult. The robotic community has produced numerous
tools, APIs and middlewares to help debug and trace the
construction and execution of robotic behaviors. However, most
of available debugging tools are text and log-oriented, leading to
a tedious and ad-hoc debugging activity.

In this paper we fully describe VizRob, a tool to debug
robotic behaviors using logs and execution time. VizRob produces
interactive visualizations built from log traces within a state
machine model, that is, the visual representation of the behavior.
VizRob is founded on deficiencies we empirically found from
semi-structured interviews and a revision of tutorial materials.
A small case study received an initial feedback of VizRob in
a robotic software engineering team. Our case study shows: (i)
VizRob helps engineers solve intricate debugging scenarios and
(ii) engineers perceive VizRob as filling a relevant gap within the
current tools for building robotic behavior.

I. INTRODUCTION

Robotic behaviors are commonly implemented using large
and complex pieces of software. Although the robotic com-
munity has produced efficient APIs and middlewares to build
robotic systems, there is a still a need for adequate tools to
comfortably debug those systems.

One important aspect of developing a robot is building its
behaviors. A behavior can be seen as a reactive problem and
can be modeled using nested state machines. A survey taken
by RoboCup participants [1] shows that state machines are one
of the most affected algorithms when the robot has problems.

To understand the limitations of current debugging tech-
niques, we reviewed prominent learning materials of ROS [2],
the de-facto standard of robotic development. We then sur-
veyed three robotic software engineers. This step is key to
identifying patterns and tools commonly used in robotic soft-
ware debugging. Subsequently, we employ these patterns to
design a set of visualizations of ROS logs. We produced three
visualizations, each showing a particular aspect of the logs,
including logs’ severity and frequency. These visualizations
are packaged in a tool called VizRob. We also provided an
implementation of VizRob for SMACH [3], a widely used
framework to build robotic behaviors.

We receive initial feedback of VizRob from six robotic
software engineers. Our results show that VizRob is key
to solving complex debugging situations and it is positively
perceived by the experiment participants. In particular, all
of them acknowledge that our approach is relevant, highly
promising and significantly reduces the effort to process logs
compared to textual tools.

Contributions. The paper makes the following contributions:
• A description of VizRob, a set of high-level visualizations

of logs and execution time in nested state machines;
• Description notes of the design decisions on VizRob;
• A first small case study to gather perception and usability

of VizRob.

Outline. Our paper is structured as: Section II reviews learning
material of ROS and SMACH and surveys three robotic soft-
ware engineers. The section also formulates a set of research
questions considered in this paper. Section III presents related
work. Section IV describes the visualizations embedded into
VizRob. Section V presents design notes of VizRob. Sec-
tion VI details the case study we conducted to obtain an
initial feedback of VizRob. Section VII answers our research
questions. Section VIII presents the threats to validity of the
case study. Section IX concludes and presents our future work.

II. CURRENT DEBUGGING PRACTICES AND RESEARCH
QUESTIONS

We conducted an informal survey of debugging and logging
techniques for robotic behavior. We reviewed learning and
teaching material related to ROS as well as surveyed three pro-
fessional programmers (Section II-A). We use results from this
effort to formulate a set of research questions (Section II-B),
which will be considered to design VizRob.

A. Looking at common logging and debugging problems
To understand how developers use logs, we:
1) analyzed several robotic programs. All of them are

programs used in tutorial materials for ROS.
2) surveyed three robotic software engineers working in

robotic behaviors.
3) contrasted engineers’ answers to what we found in the

tutorial materials. We found recurrent situations related
to debugging robotic behaviors using logs.

The analysis of ROS learning material and programs indi-
cates that the most important logging practices are: marking
critical events on the robot (e.g., low battery), indicating value
of variables (e.g., battery level, distances), values of published
variables, value of received variables (e.g., text heard, pose
of the robot), marking part of the program (e.g., starting to
move), marking the part where the program failed (e.g., the
program did not receive a value, it did not plan a path). These
situations are recurrently employed as “typical situations” for
which a logging facility should be employed.

Alexandre Bergel
3rd IEEE International Conference on Robotic Computing
IEEE IRC ‘19�



The results of our analysis is similar as to the results by
Valdman [4] for generic log files. He stated that logs often
show values of variables (e.g., battery level) and that logs
present information that developers consider important (e.g.,
low battery, marking part of the behavior of the robot).

We contrasted what we found in learning materials with the
survey of three software robotic engineers involved in robotic
behavior from different robotic teams. We found the following:

• The three engineers use the ROS logs system.
• They only use print when they debug. After finishing the

debugging process, those print instructions are removed.
• They use the ROS logging facility in a similar fashion as

provided in the ROS learning materials.
• Logs are the most common way to understand what the

robot is doing, but it is not the only way. We found other
ways to introspect the robot behavior: using the lights of
the robot or making it speak to indicate some aspect of
its behavior. Another way is by using the ipdb debugging
tool and analyzing saved executions a posteriori.

• Logs are complemented with dedicated tools
(rqt_console, swri_console, ANSI colors on terminal).

Participants emphasized that logs are helpful but rarely suf-
ficient alone, and some errors are very difficult to reproduce.
The tools rqt console [5] and swri console [6] are sophisti-
cated, general purpose GUI to filter and navigate ROS logs,
which do not take account the domain of robotic behaviors.

The survey of Wienke and Wrede [7] shows developers also
use special purpose visualization tools to monitor systems.
They also state that developers mostly use printf or log file
as debugging tools for robotic systems, while they sometimes
use debuggers such as gdb.

All the information obtained in this section, including the
data, the programs we analyzed and the survey is available
online for reproducibility [8].

B. Research Questions

Based on the debugging practices we observed, we designed
the VizRob debugger for robotic behavior. We formulated a set
of research questions we wish to answer:

• Q1: Can developers locate the causes of faulty behaviors?
• Q2: Can developers locate the value of the variables

when the program is running? Can developers locate the
possible variables that produce faulty behaviors?

• Q3: Is the program more error-prone in their critical
parts?

• Q4: Can developers understand the causes of faulty
behaviors?

• Q5: Is VizRob faster at locating faulty behaviors than
using conventional debugging methods?

• Q6: Is VizRob faster at locating the value of the variables
that produce a faulty behavior than using conventional
methods?

• Q7: Is VizRob faster at locating the critical parts of the
program than using conventional methods?

• Q8: Is VizRob faster at understanding faulty behaviors
than using conventional methods?

Our first four research questions focus on understanding
errors of faulty behaviors, while the last four focus on the
time of understanding these errors of faulty behaviors.

We define the critical parts of a program as the part of the
program where, in its execution, produces the most logs and
expends most of the execution time. Also, in these parts the
program produces logs of a level of severity that developers
should be concerned about, such as warning and error logs.

III. RELATED WORK

In the previous section we mentioned rqt console [5] and
swri console [6]. Both are sophisticated log listings for ROS
systems. The swri console has several log filters to focus on
the important logs. However, both tools are for generic pur-
poses, not being able to use the domain of robotic behaviors.

SMACH [3] is an API for nested state machine popular with
ROS. SMACH provides a run-time visualization that shows
the machine, the current executed state of that machine and
several variables that are passed between states.

FlexBe [9] is a tool to create behaviors using visual pro-
gramming, auto-generated code and already coded states. It
also monitors and supports modification of the behavior at run-
time. Because it uses visual programming, it also provides a
visualization of the states and transitions of the built machines.

LRP [10] is a live programming language for behavior-based
robots. In LRP, developers can build behaviors on the fly, i.e.,
they can change the behavior of the robot while the robot
behaves. LRP provides a visualization of the state machines
that changes dynamically when the code is changed.

All these tools offer high level, run-time visualizations of
state machines. However, these visualizations do not allow
visualizing state machines produced by other tools. On the
other hand, VizRob has an open API for developers to use
other tools.

Moreover, the mentioned tools only visualize the machines
without additional information. This reduces the feedback the
tool gives to developers. VizRob integrates more than the
machine visualization, i.e., logs and execution time, providing
more feedback than the previous tools.

There are visualizations for log files depending on the
domain of the execution, for example, ASTRO [11] is a tool
that visualizes log files produced by unit tests. This tool allows
developers to see more than just passed or failed tests.

Augmented Reality has been used to debug the data cap-
tured by the robot, comparing this data against the real
world [12], [13]. This helps developers to understand if the
captured data is precise. While these tools analyze the data of
the sensors, VizRob uses logs information on the domain of
robotic behaviors to show developers where, in the program,
the behavior may be failing. Both techniques are complemen-
tary, using both may give even more feedback to developers.

IV. VIZROB

We use a graph metaphor to represent state machines and
use polymetric views to represent metrics [14]. Section IV-A
presents the common features of all VizRob visualizations.



Sections IV-B – IV-E describe our visualizations. Section IV-F
discusses the navigations between visualizations. VizRob is an
artifact available online1.

As far as we know, there are no available visualizations that
help developers to understand how are logs being produced in
a nested state machine type of program. We used VizRob for
that purpose.

The core of VizRob is independent of the robotic behavior
API. VizRob is able to work with any API if a suitable bridge
between VizRob and the API is built. Also, the API itself
should follow the nested state machine paradigm. VizRob
generates the visualizations automatically with the provided
information passed by this bridge. VizRob is bridged with
SMACH, a popular API to build robotic behaviors in ROS.

In this section we present the visualizations provided by
VizRob. We use a routine to grab an object using an artificial
robot arm as our running example throughout this section.

A. Common Features

VizRob presents three distinct visualizations with common
threads. Each visualization represents a state machine with
nodes that represent states and directed edges are their tran-
sitions. A green border around a state indicates the presence
of a nested machine. The machine name is located at the top-
left corner. The names of the state are displayed with a pop-
up when the cursor is over one of the states. The polymetric
information of each visualization is presented in a label.

In all visualizations, states are represented as a box to which
metrics are vertically and horizontally mapped: the height of
a box represents the execution time (i.e., the time of execution
inside the state), and the width represents the number of logs
(i.e., the number of logs produced while executing this state).

An example of one of these visualizations for grabbing an
object can be seen in Figure 1 (more information on this
particular visualization is shown in Section IV-B). We see
that the state machine contains three nested machines and a
seemingly important state that has 5 incoming transitions.

Every visualization has the option to remove and show the
states that are not being executed during the robot execution.
This is crucial for indicating the coverage of the robotic
behavior during its execution. The transitions represent static
relations: they are shown if they connect the executed states,
even if the transition is not triggered.

In Figure 2 we see the same execution presented in Figure 1,
but with the option to only show the coverage of the behavior
execution. While in the whole visualization we identified a
state that seems important because it has 5 incoming transi-
tions, we can see that this state is not even executed.

B. Types of Logs

The types of logs visualization associates states to the
severity of anomalies found in the logs. States are colored in
yellow, red or dark gray. When there is at least one warning
log in a state, this state is yellow. A state with at least one

1 http://mcamp.github.io/VizRob

error log is red. When there are warning and error logs in
the state, red has priority. Dark gray is the default state color,
without any warning or error log produced by the state.

Fig. 1. Type of Logs Visualization. The big yellow state is called MANIP-
ULATION, the biggest red square is called GET OBJECT and the smallest
red square is called GET GRASPS.

Fig. 2. Figure 1 while turning on the coverage option. All the states that do
not execute in this example disappear.

Figure 1 shows the visualization of our running example. In
the visualization there are two prominent and large states. The
large yellow state, named manipulation in our example, trig-
gers, at least, one warning log and takes a significant amount of
time to execute. The wide red state, named get object, triggers
at least one error log while its execution do not take much time
since it is short. This state has a green border, indicating it
contains a nested machine. Both states have a considerable
amount of logs of any severity. The state get grasps also
produces error logs since it is red, takes very little time to
execute and does not produce a significant amount of logs,
since it is very small.

http://mcamp.github.io/VizRob


C. Error Logs

It is relevant to highlight logging data indicating erroneous
behavior. The error logs visualization uses a dedicated color
mapping. The number of error logs emitted from the execution
of a state is linearly mapped to a gray-to-red fading. In this
visualization, a red box indicates the state that emitted the
largest number of error logs, while a gray state is the state
with the least number of error logs.

Figure 3 illustrates the error logs visualization. We see that
get object is not the state that triggers the most error logs,
even if it triggers the highest number of logs of any severity.
The small red square is named get grasps and deserves to be
carefully considered by the robotic software developers.

Fig. 3. Error Logs Visualization. In this example, the GET GRASPS state
generates more error logs than the GET OBJECT state, even when the last
generates more logs in general.

D. Frequency

Determining the number of times a state is executed is rel-
evant when debugging. The frequency visualization represents
the number of times a state is executed using a white-to-black
fading.

In this visualization, a state is colored black if it has many
executions and it is light-gray with very few executions. The
number of executions of a state may vary from the time of the
execution. For example, while a state can be executed for a
long time, but only once, another state can be executed a short
time, but many times. Figure 4 presents this visualization.

This visualization clearly distinguishes the states that are
executed from the ones that are not executed. The white
ones are not executed. The black ones are executed the same
number of times. Note that in this execution, there are no gray
states that are executed an intermediary number of times.

E. Logs Listing

Each of the previous visualizations are interactive. Clicking
on a state lists all the logs associated with the state (Figure 5).
Moreover, the exact location in the source file that triggered the
log is also given. This list of logs offers the classical navigation
and filtering options found in common debugging tools. The

Fig. 4. Frequency Visualization. In this example, all the white states are
not executed. When turning on the coverage visualization, we can see that all
states not shown in Figure 2 are the white states of the frequency visualization.

listing provides two filters: one for the severity and another
for the name of the program where the log is produced2.

Fig. 5. Logs Listing. At the left we see the filter options: name of the
program and severity. At the right we see the list of all the logs produced on
the execution of this behavior. An icon appears on the left of the text of the
log representing the severity of the log.

F. Navigation

Details of all visual elements may be obtained on demand.
Clicking on an element opens new visualizations, leading to
a chain of visualizations: the previous visualization remains
accessible and interactive. Clicking on a state with a nested
machine reveals the nested structure, with the option to use
any of the previous visualizations. When a log is clicked, it
is possible to see the attributes of the logs, such as the name
of the program, severity and/or message. Figure 6 exemplifies
the recursive behavior of VizRob.

2In the case of ROS, the name of the program is the name of the Node
producing the log



Fig. 6. Navigation of the Visualizations. In the left visualization we have the root machine. The right visualization represents the nested machine of the state
represented with the big yellow square of the left visualization, the MANIPULATION state.

V. VIZROB DESIGN NOTES

VizRob’s core is designed around the concept of nested state
machines, this allows VizRob to be independent of the robotic
behavior APIs. It shows run-time information of a nested
machine program: logs and execution time. It is important
to simulate an execution of the behavior of the program in
VizRob to get the right data to show in the visualizations.

VizRob generates its own machines, states and transitions
by taking into account the information of the robotic behavior
API. A Machine object contains all the State and Transition
objects of that machine. For nested state machines, a state may
have a unique machine instance.

Because of the run-time nature of VizRob, one of the most
important aspects is how it saves the run-time information.
VizRob saves the state executing of the machine, i.e., the
current state. Whenever a state is executing, VizRob creates
a single Status. A Status is the representation of the run-time
information of a state. Here, VizRob saves all the logs that
are produced in that point of the execution. VizRob also saves
time when the state stops being active. With this, VizRob gets
the execution time of that status.

Moreover, a state can be active any number of times in the
same execution of the program (i.e., with a loop of states).
For this reason, every state has a collection of statuses. The
sum of all status times is the total execution time that is
shown in the parametric views of VizRob (the parametric
views explained in Section IV). The number of executions
visualized in the frequency visualization (Section IV-D) is the
amount of statuses that a state has.

VizRob allows for a machine to have more than one active
state at the same time, which allows for concurrent states on
the execution of a machine. In this case, the logs produced by
the program are assigned to all the active states. We cannot
be sure in which particular state the log is being produced.

For a machine, it groups the information already presented
in states. For example, the logs of a machine are all the logs
of all the states of that machine.

VizRob can be fed data automatically using a bridge that
connects it with the desired robotic behavior API. The API
should offer a way to expose relevant information about
the static and dynamic configuration of the state machine.
In particular, we designed a bridge that connects VizRob
with SMACH [3], a popular ROS API to develop robotic
behaviors. By using an extra interface shown in Figure 7,
VizRob connects with the SMACH program, receiving the data
while the program is running. The data that VizRob collects
is: the static structure of the machine, the current states of
the running machine and the logs of the program. VizRob is
fed with the data of the SMACH program while the SMACH
program is running, this allows assigning the program logs
to the running states and setting the execution time and the
number of executions of the states. This data is then processed
by VizRob to automatically build the visualizations after the
program stops. The program needs to stop for VizRob to
collect the final information of the programs (i.e., the execution
time of the last active states).

VizRob only shows one execution of a behavior at a time.
If VizRob is not stopped at the end of the behavior, it may
clash with the information of a new behavior. For VizRob
SMACH, to allow the recollection of data for a new behavior,
a new connection with SMACH should be created, using a
new instance of the VizRob SMACH UI.

VI. INITIAL FEEDBACK: CASE STUDY

We received an initial feedback of VizRob through a small
scale case study involving six robotic engineers (who we
refer to as participants in the remaining of the paper). The
participants are members of the UChile Homebreakers team3.
All the participants of this team have extensive experience in
participating at the RoboCup competition (RoboCup@Home
league) and all are experienced with nested state machines.
The team built and designed the software aspects of two

3 http://robotica-uchile.amtc.cl/about.html

http://robotica-uchile.amtc.cl/about.html


Fig. 7. SMACH Bridge UI for VizRob. Developers need to give the name
of the three communication channels for: structure, status update and logs.
After starting the recollection of data with the start button, the stop button
becomes available. When stopping the recollection of data, the open button
becomes available. Clicking on the open button will make the visualizations
of VizRob available.

robots: Bender4 and Pepper5.
We also have as a participant a former member of the

UChile Robotic Team6. This participant has extensive experi-
ence in participating at the RoboCup competition, RoboCup-
Soccer league. The participant is an expert at building behavior
and handing all software aspects of the NAO robot7.

For the sake of reproducibility, the data produced in this
case study is available online [8]. It includes videos, audios
and the answers of the pre and post questionnaire.

A. Robotic Behaviors

We visited the UChile Homebreakers team on site and the
participants agreed to use VizRob to debug robotic executions,
on 2 different robotic behaviors. We asked the participants to
use VizRob on faulty behaviors with difficult-to-debug anoma-
lies, but also in seemingly correct behaviors. An apparently
correct behavior may still have errors during its execution.

The first behavior is Speech and People Recognition (SPR),
which consists of 3 routines: categorizing people in a crowd
(e.g., determining gender and age); then, an operator asks
questions about the crowd; finally, the robot is surrounded by
people and they take turns asking the robot questions.

The second behavior considered in our case study is Grasp-
ing. In this task, Bender positions itself in front of a table. It
recognizes an object located on the table and grabs it.

The participants employed VizRob on 3 different executions
of these 2 different behaviors.

B. Problems found

In this case study all participants should find problems
of a particular behavior in 3 executions of it. We label the
participants according to the behavior they debug and the team
they belongs to. For the behavior we use S for SPR and G for
Grasping. For the team we use H for UChile Hombreakers
team and R for UChile Robotic team.

For the SPR behavior we had 3 participants labeled SH1,
SH2 and SH3. Two of them have a knowledgeable experience

4 http://robotica-uchile.amtc.cl/bender-robocup.html
5 http://robotica-uchile.amtc.cl/pepper-robocup.html
6 http://robotica-uchile.amtc.cl/about.html
7 https://www.softbankrobotics.com/emea/en/nao

using SMACH and one of them has an advanced experience
(within the scale: None, Beginner, Knowledgeable, Advanced
and Expert). All are undergraduate students with an experience
ranging from 1 to 3 years using SMACH.

For the Grasping behavior we had 3 participants labeled
GH1, GH2 and GR3. GH1 and GH2 considered themselves
to have a knowledgeable experience using SMACH (within
the same scale as before), while GR3 do not have experience
in SMACH. However, GR3 is an advanced robotic developer
with more than 5 years of experience and 3 to 5 years of
experience using ROS. GH2 is a Master student and GR3 is
a professional holding a Master degree.

Depending on the execution of the behavior, participants
found different types of problems in the executions thanks to
VizRob. We list some of the techniques using VizRob that the
participants employed to find these problems:

Error logs are important: The red states on the visualization
are important, they show problems for all the five executions
that they appeared.

Warning logs (in big states) may be important: There are
several problems that became apparent to participants thanks
to the yellow color on states for warning logs, especially when
there were a lot of logs produced on that state. This is shown
in the Type of Logs visualization with big yellow squares and
they were relevant in the 2 executions where they appeared.
The problems that became apparent at least need to be checked
to see if they are important or not, as stated by GR3.

Similar states group errors: In one of the executions of the
grasping behavior, GH2 notices a problem that was visible,
thanks to a group of yellow states that were connected to each
other. This group of yellow states shows several warning logs
that are connected within the same problem.

Frequency visualization group several states: Connected
with the previous problem, after finding all the yellow states,
changing to the frequency visualization, GH2 notices that
the errors not only were connected, but happened multiple
times. The frequency visualization shows states with a lot of
executions, indicating that the robot tried several times to grab
an object, but finally give up.

Problems with variables: In 2 of 3 executions of the SPR
behavior, there were problems of not filling or wrongly filling
variables for the SMACH API. This is found by the three
participants of the SPR behavior, thanks to a red square
presented in the type of logs visualization. In one of the
executions of SPR, SH3 believes this error is responsible for
making the robot incorrectly answer questions, even when the
execution of the routine to answer questions is several states
ahead of the state where the error appeared.

Seemingly correct behaviors can have problems: One of
grasping behavior executions performed correctly, resulting in
the robot grabbing the object. However, the three participants
notice several problems that may affect the robot in the future.
These problems are apparent in the type of logs visualizations
with yellow and red states.

http://robotica-uchile.amtc.cl/bender-robocup.html
http://robotica-uchile.amtc.cl/pepper-robocup.html
http://robotica-uchile.amtc.cl/about.html
https://www.softbankrobotics.com/emea/en/nao


C. VizRob vs participants’ debugging tool

In robots like these, it is common to have several open
terminals that execute different aspects of the robot. All
participants stated they only use the terminal where they
executed the behaviors to debug and not the other terminals
that executed other aspects of the robot. They look at the logs
in that terminal to see what is happening.

When the error of a behavior crashes the system, it is easy
for the participants to find it because the last log of the usually
terminal points to the crash. However, SH3 mentioned that
VizRob helps to better localize the cause of the problem,
because an error may be triggered way before it manifests
in the execution. With VizRob, the participant can see that the
program seemed fine until the error, reducing the debugging
time for these kinds of errors. SH1’s conclusion is similar: any
other tool to debug is for generic purposes and they spend too
much time looking for the right information.

The participants believe they can find almost all the errors
they found with VizRob by using the terminal. However,
all of them believe it is difficult and time consuming using
the terminal compared with our tool. Within the terminal it
is difficult to find the right log because of its information
overload. These errors can be found by tools like rqt console.
However, with this tool they still may have a problem locating
the root of the error if they do not see where the error is in
the execution, as we previously mentioned.

Some errors can be found just by being present in the task
at hand. If the robot is incorrectly answering a question, then it
is easier to hear that the robot is performing poorly instead of
looking at logs in any kind of sophisticated tool. However, with
VizRob, SH3 found the cause of why the robot was answering
incorrectly. The participant believes he could not reach the
same conclusion by solely using the terminal.

In seemingly correct behaviors, participants told us they
mostly ignore if there are problems because the robot behaves
correctly. As we mentioned in the previous section, VizRob
helps developers find problems even in correct behaviors,
while they did not even try to find those errors in the terminal.

D. Use of VizRob

Five of the six participants first used the coverage option to
find what the last state of the execution of the behavior was,
believing they would find the error there.

After finding the last executed state, all the participants used
the Type of Logs and the Error Logs visualizations to have a
general view of the problem and click on the state that may
have a problem. GH1 told us that these visualizations help him
see if the machine is having other problems or if the current
error stems from an earlier problem in the execution of the
machine.

Three of the participants found VizRob extremely useful
(on a scale of “not useful”, “somewhat useful”, “useful”,
“extremely useful”), while the other three found the tool
useful. All of them wanted to adopt VizRob on the debugging
of robotic behaviors. Two of them would use VizRob to solve
issues in complex robotic behaviors.

GH1 told us that many events occurred while executing
a robotic behavior. However, most of these events are not
noticeable in the same terminal where the behavior of the robot
runs. For example, it is not possible to see low-level hardware
logs in the terminal of the behavior of the robot. VizRob is
considered to be a significant change in that respect.

Moreover, robots are known to have problems of uncertainty
and these problems may affect the robot in future executions
of the same behavior, as stated by GR3. GH2 also stated that
if there are problems that do not affect the execution of the
machine in an isolated context, it may affect the execution
of more complex behaviors when using this machine with
others. Both participants agree that VizRob may reduce these
issues because, with VizRob, they found problems even in a
seemingly correct execution.

VII. ANSWERING OUR RESEARCH QUESTIONS

Taking into account the previous experiment, we answered
the eight research questions listed in Section II-B:
Q1: positive answer. The participants found several problems
in all the executions, even with the execution that worked
seemingly fine. VizRob helps them in finding faulty behaviors.
Q2: negative answer. VizRob does not help developers in
finding the value of variables and how they change in time,
nor in correct and faulty behaviors. Our best guess is that in
the executions at hand, the developers do not use or only use
a small number of logs to show the value of the variables.

However, participants still see the value of some variables
that were useful. Nevertheless, these kinds of logs do not seem
prominent in executions of the robot in the case study.
Q3: no answer. Even when the participants found more errors
in the critical parts of the robot, we are not sure if in these
parts there are more errors than other parts. Nevertheless, we
show that critical parts are important places in the behavior of
the robot and they need to be analyzed.
Q4: positive answer. The participants not only found the place
where the faulty parts of the behaviors were, but also they
gave several insights about why the robot may be failing. One
participant stated this when he told us that the tool helped them
to better pin down the possible causes of the faulty behavior.
Q5, Q6, Q7, Q8: positive answer, but only based on
participant perception. In all the questions related to time,
all participants considered this tool much faster to find bugs
and therefore, to fix them rather than use their conventional
methods. This is an important statement, however, it cannot
be verified without a rigorous comparison.

VIII. THREATS TO VALIDITY

In this section we present the most important threats to
validity for our case study.
Ready to use VizRob. All participants found VizRob more
comfortable to use rather than using their normal way of
debugging. However, one of them explicitly told us that if
VizRob is not as easy to install as if it is to use, he may not
find it as comfortable as he stated.



Nevertheless, we do not want to measure that part of the
development (even as important as it is), we only want to
measure the effectiveness of VizRob in finding errors in the
behavior. With that in mind, the participants found a significant
number of errors using VizRob and they stated that VizRob
helps them in locating the errors in an accurate and faster
fashion.

Lack of comparable baseline. Because we conducted a small
scale case study, we do not have a satisfactory baseline to
compare to VizRob. The participants do not use sophisticated
tools to debug programs, they only use the terminal. We
therefore expect better results using VizRob.

Nevertheless, our case study is not about comparing VizRob
against the terminal, or any other debugging tool for now. In
this work we want to show how participants behave when
using VizRob. Also, we want to show that the participants
can find errors using VizRob without a long previous training.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we presented VizRob, a debugging tool for
robotic behaviors. This tool incorporates metrics based on logs
and execution time into several visualizations of nested state
machines, a classical paradigm to represent robotic behaviors.
Developers can navigate into the machines and states to see
focused information of that particular element. Developers can
look at the overall information or immerse into the behavior
and focus their attention on a particular part of the system.

VizRob is fed on the fly by developers. In particular, it can
be fed by running programs with a proper bridge between
the program and VizRob. Using our bridge between SMACH
and VizRob, developers can feed VizRob with behavior-based
programs using SMACH.

We received initial feedback on VizRob using a small
scale case study among six software engineers from the
UChile Homebreakers team and the UChile Robotics team.
Our preliminary findings show that participants find several
errors in robotic behavior programs and they suggest solutions
for these errors, even without looking at the source code of the
programs. VizRob is positively perceived by the participants,
and in particular, all of them want to adopt this tool in the
future when they program robotic behaviors.

However, VizRob intensively uses the logs of the system.
If the logs of the system are insufficient, VizRob may be
insufficient for developers too. Nevertheless, VizRob still
uses information of execution time of the program, showing
developers where programs expend more of the time. This may
be useful for developers, even for them to notice where the
program needs more logs. This is an interesting approach and
worthy of a future study for our tool.

VizRob has two main lines for future work. First, with our
preliminary findings we need to conduct more experiments
to measure the real value of the tool. In this work we have
positive findings based on the qualitative information that
participants gave us. It is important to measure the value of
VizRob in an experiment with quantitative value.

Second, there are several ways to improve the usability of
VizRob. VizRob is fed at run-time because we plan to make
visualization of running nested state machine programs. This
is, VizRob will become available at the same moment it is
receiving data, not only a posteriori.

We also expect VizRob to simulate the execution of the
program. In this simulation developers could navigate the
visualizations of the state machines at any point on the
execution of the program, not only at the end. This will allow
them to have much more information of the behavior of their
robots at any point of time.

ACKNOWLEDGMENT

We would like to thank the following colleagues for the semi-
structured interview that helped us shape VizRob: David Conner, Loy
Vanbeek and Cristopher Gómez. We thank the UChile Homebreakers
and the UChile Robotic teams for helping us evaluate VizRob. We
thank LAM Research for partially sponsoring the effort described
in this paper. Finally, Miguel Campusano thanks Conicyt8 for his
funding via CONICYT-PCHA/Doctorado Nacional/2015-21151534.

REFERENCES

[1] Gerald Steinbauer. A survey about faults of robots used in RoboCup. In
RoboCup 2012: robot soccer world cup XVI, pages 344–355. Springer,
2013.

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source
Robot Operating System. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[3] Jonathan Bohren and Steve Cousins. The SMACH high-level executive
[ROS news]. IEEE Robotics & Automation Magazine, 17(4):18–20,
2010.

[4] Jan Valdman. Log file analysis. Department of Computer Science and
Engineering (FAV UWB)., Tech. Rep. DCSE/TR-2001-04, page 51, 2001.

[5] ROS. The rqt console. http://wiki.ros.org/rqt console. Accessed: 13-
02-2018.

[6] Southwest Research Institute Robotics. The swri console. https://github.
com/swri-robotics/swri console. Accessed: 13-02-2018.

[7] Johannes Wienke and Sebastian Wrede. Results of the survey: failures
in robotics and intelligent systems. arXiv preprint arXiv:1708.07379,
2017.

[8] Miguel Campusano and Alexandre Bergel. VizRob’s Initial Feedback:
Case Study, November 2018. DOI: 10.5281/zenodo.1476230.

[9] Philipp Schillinger, Stefan Kohlbrecher, and Oskar von Stryk. Human-
Robot Collaborative High-Level Control with an Application to Rescue
Robotics. In IEEE International Conference on Robotics and Automa-
tion, Stockholm, Sweden, May 2016.

[10] Miguel Campusano and Johan Fabry. Live Robot Programming: The
language, its implementation, and robot API independence. Science of
Computer Programming, 133:1–19, 2017.

[11] Diego Castro and Marcelo Schots. Analysis of test log information
through interactive visualizations. In Proceedings of the 26th Conference
on Program Comprehension, ICPC ’18, pages 156–166, New York, NY,
USA, 2018. ACM.

[12] Toby Hartnoll Joshua Collett and Bruce Alexander Macdonald. An aug-
mented reality debugging system for mobile robot software engineers.
JOURNAL OF SOFTWARE ENGINEERING IN ROBOTICS, 1(1):18–32,
2010.

[13] Patrick Renner, Florian Lier, Felix Friese, Thies Pfeiffer, and Sven
Wachsmuth. Wysiwicd: What you see is what i can do. In Companion
of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, pages 382–382. ACM, 2018.

[14] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on Software
Engineering (TSE), 29(9):782–795, September 2003.

8 http://www.conicyt.cl

http://wiki.ros.org/rqt_console
https://github.com/swri-robotics/swri_console
https://github.com/swri-robotics/swri_console
http://www.conicyt.cl

	Introduction
	Current Debugging Practices and Research Questions
	Looking at common logging and debugging problems
	Research Questions

	Related Work
	VizRob
	Common Features
	Types of Logs
	Error Logs
	Frequency
	Logs Listing
	Navigation

	VizRob Design Notes
	Initial Feedback: Case Study
	Robotic Behaviors
	Problems found
	VizRob vs participants' debugging tool
	Use of VizRob

	Answering our Research Questions
	Threats to Validity
	Conclusions and Future Work
	References

