
Does Live Programming Help Program Comprehension?
A user study with Live Robot Programming

Miguel Campusano
PLEIAD and RyCh labs,

Computer Science Department
(DCC), University of Chile, Chile

Alexandre Bergel
PLEIAD lab,

Computer Science Department
(DCC), University of Chile, Chile

Johan Fabry
PLEIAD and RyCh labs,

Computer Science Department
(DCC), University of Chile, Chile

Abstract
A tenet of Live Programming is that its tightening of the de-
velopment feedback loop results in better program compre-
hension and hence higher developer productivity. There are
however no extensive reports published on user studies that
validate this claim when considering already existing code.
In this paper we report on a controlled experiment that estab-
lishes whether our live programming language, LRP, helps
in program understanding when compared to a non-live lan-
guage and toolkit. We furthermore obtained qualitative feed-
back from the test subjects on their preferences between the
two systems. Remarkably, while the users prefer the live sys-
tem over a non-live system, the actual level and speed of
program comprehension is the same for both systems.

1. Introduction
In Live Programming (Tanimoto 1990), software develop-
ment is augmented by performing continuous real time mod-
ifications of running programs and by an always present vi-
sualization of the running program. The goal of live pro-
gramming is to improve program comprehension by provid-
ing immediate feedback. This is done on the one hand by
integrating code changes without the need for restarting the
program, and on the other hand by the visualization reflect-
ing the state of the running program. A central tenet of live
programming is that since this feedback allows developers to
immediately see the results of their changes, they will better
understand the code, yielding higher productivity.

As part of our research on software engineering for
robotics we aim to speed up the development of behaviors
of robots. Using live programming to yield such a speedup

[Copyright notice will appear here once ’preprint’ option is removed.]

was therefore an appealing idea and motivated us to build
a live programming language for robotics: LRP (Fabry and
Campusano 2014; Campusano and Fabry 2016). In LRP
robot behaviors are written as state machines, with the main
difference over existing solutions being the live nature of
the language. In LRP the running state machines are con-
tinuously updated as the program is changed, and they are
visualized in a purpose-built visualization.

As part of the validation of LRP we are performing a
number of user studies to establish if there indeed is a pro-
ductivity advantage of using it instead of the common pro-
gramming languages and tools. In this paper we report on
our user study that treats program comprehension of exist-
ing code. This user study is however relevant beyond simply
evaluating LRP. This is because, to the best of our knowl-
edge, there has been no extensive report published of a study
on the productivity advantages of live programming for code
comprehension of existing code.

Our user study is a controlled experiment using within-
subjects and repeated measures. We implemented two dif-
ferent tasks, each in two different systems: LRP and the
baseline system. We measured correctness of program un-
derstanding as well as time taken, and obtained qualitative
results through a post-experiment questionnaire.

We find that the results of our experiment are notewor-
thy: the test subjects’ performance is actually unchanged be-
tween the two systems, yet they nonetheless still express a
clear preference for using LRP over the common program-
ming language and toolset.

2. The Systems Under Comparison
2.1 Live Robot Programming
LRP is a live programming language for the specification of
the behavior of robots (Fabry and Campusano 2014; Campu-
sano and Fabry 2016). A LRP program is the textual defini-
tion of a tree of nested state machines. To the arguably well-
known model of nested state machines, LRP adds lexically
scoped variables and actions in states and transitions. Ac-
tions are blocks of Smalltalk (Goldberg and Robson 1980)

1 2016/9/22



code. These can be guards for transitions, be executed when
entering or exiting a state, or executed in a loop when being
in a state. All interaction with the robot is performed inside
actions and as a consequence LRP has no binding to a spe-
cific robotic API or middleware.

The live nature of LRP allows for the direct construction,
visualization and manipulation of the program’s run-time
state. This direct manipulation is achieved firstly by having
its integrated development environment (IDE) visualize the
running state machine as it is being programmed. Secondly,
the IDE also shows the values of variables at runtime and
these values can be inspected and manipulated in the IDE
without needing to change program code.

While LRP is not coupled to a specific robot API (and
not fundamentally restricted to the development of robot be-
haviors) it does provides out-of-the box support for three
robot APIs. First and foremost, it provides support for
ROS (Quigley et al. 2009), de-facto standard middleware for
robotics. Second is support for the Lego Mindstorms EV31

robot, and third LRP also supports the Parrot AR.Drone2.
A full introduction to LRP is outside of the scope of this

paper. Instead we refer to the published literature (Fabry and
Campusano 2014; Campusano and Fabry 2016) as well as
the LRP website: http://pleiad.cl/LRP for videos.

2.2 Baseline: SMACH
In ROS (Quigley et al. 2009), a popular library for devel-
oping robot behaviors in Python is SMACH3. We focus on
this library as a baseline to evaluate the understanding of
robotic behaviors. This is because, beyond its popularity,
Python and SMACH have key similarities to LRP: the lan-
guage is dynamically typed, SMACH programs are written
as nested state machines with approximately the same fea-
tures as LRP, and SMACH also provides a visualization of
the running machines.

We wish to compare LRP and SMACH as complete sys-
tems and skip comparing individual features. This notwith-
standing that LRP has features that are not present in
SMACH (especially considering liveness). Comparing both
systems is ambiguous in terms of which specific features are
better, however both systems can be compared in terms of
effectiveness and efficiency. If one system is better than the
other we can not be sure which features are the most effec-
tive but we still can be sure about which system, as a whole,
is better for program comprehension.

3. Experiment Design
We performed a controlled experiment using within-subjects
and repeated measures to gauge whether code written in a
live programming language is easier to understand than code
using a conventional language and toolkit for robotic de-

1 https://education.lego.com/mindstorms
2 http://developer.parrot.com/
3 http://wiki.ros.org/smach

velopment. More specifically, we cross-evaluated LRP with
Python and SMACH and measured the effectiveness and ef-
ficiency of understanding an existing complete program.

Put differently, our dependent variables are the correct-
ness of the understanding of the program, i.e. the effective-
ness in understanding programs, and the completion time,
i.e. the efficiency in understanding programs. Our indepen-
dent variables are the systems used in the experiment, LRP
and SMACH, and the two different programs that subjects
will try to understand.

3.1 Tasks to Evaluate
We performed a cross-evaluation experiment and imple-
mented two different programs that subjects should under-
stand. These programs specify two robot tasks. For the sake
of the experiment, we did not perform the experiment on real
hardware but we simulated a Turtlebot robot4 in the Gazebo
robotics simulator5. Note that simulation of robot behavior
as part of the development process is standard procedure
in the robotics community as it allows one to abstract from
hardware issues and accelerates the development process.
For both tasks we also implemented a user interface for the
robot. This is a simple textual interface where the robot can
ask the users to take certain actions and to provide them with
information.

We now present a summary of the two different tasks:

Task A In this task the Turtlebot performs an object deliv-
ery service. First, the robot is idle waiting for instructions.
The program defines 4 possible places where the Turtlebot
can go. The user should input a place for the robot to move
to. This movement can then be seen in the simulation. When
the robot arrives, it asks for an object to the user that called it
(the caller), this action is simulated by pressing Enter in the
interface. After this, the robot asks for a destination to de-
liver the object. When the robot arrives to the desired desti-
nation, it asks the user who receives the object (the receiver)
to take the object. Again, this action is simulated by press-
ing Enter. Then, the receiver can: send another object back,
return the robot to the caller without an object or return the
robot to its original position. If the robot returns to the caller,
the caller can: send another object to the receiver or return
the robot to its original position. Whenever the robot returns
to its original position, it will wait for someone to call it
again, repeating the behavior.

Task B In this task the Turtlebot broadcasts a message.
First the robot asks the user for a message to be delivered.
Then the robot distributes the message to 4 different loca-
tions. In each of these places, the receiver of the message
has a possibility to tell the robot that he/she does not under-
stand the message. If the receiver does not understand the
message, then the robot goes back to the user who origi-

4 http://wiki.ros.org/Robots/TurtleBot
5 http://gazebosim.org/

2 2016/9/22



nally provided the message to the robot where it asks for a
new message. The circuit then is resumed, but using the new
message instead of the old one.

3.2 On Reducing Biases
Reducing bias of difficulties and feature use The tasks
were designed to use a wide variety of nested machine fea-
tures without being trivial or too difficult, avoiding a bias
where developers would understand the programs too fast or
would not understand the programs at all.

Both tasks, while different, are built in a similar way.
Both tasks have:

• A comparable number of states and transitions
• Only one nested machine
• States where the program waits for a couple of seconds
• Several states where the robot moves
• Non-straightforward execution, i.e. several paths and ex-

ecution loops
• Use of variables
• Obfuscated names (explained in detail below)

We excluded functionalities that could be interesting but
may benefit the performance of one of the system over the
other. For example:

• Concurrent behaviors: SMACH provides concurrent ma-
chines, LRP does not.

• A transition from every state in the machine to one
in particular: LRP provides such ‘wildcard’ transitions,
SMACH does not.

Reducing naming bias We decided to obfuscate the names
of every entity in the system because we want the users to
understand the program not by just looking at meaningful
names. We see this as a important possible bias for program
understanding and hence wished to remove it. For example,
for the robot to move to a point in the map it needs to
receive the exact point to which move to. This can be seen
in the source code if we give a meaningful state name like
WaitingForDestination: the developer can only look at the
state name to understand that the robot is waiting to receive
that information in that state. This is a problem because, to
understand the program, the subject may just look at the
meaningful names and may not look at the source nor try
to understand the program by running it or any other means,
hence adding a bias in the experiment. The subject could just
identify the names of the states and answer the questionnaire
according to those meaningful names.

To avoid this problem, we replaced every meaningful
name using a string formed by 4 random characters. We also
decided to avoid using names like stateX to indicate states,
for example. This is because the creation and use of states
– and other program elements – in both systems are quite
different. We want the developers to experience this differ-

ence by, as before, not only looking at meaningful names,
but looking at the program structure, further removing bias.

3.3 Work Session
We performed the controlled experiment one subject at a
time, to better be able to analyze how each subject works
with both systems. For every subject called, we assigned
them a type of work session out of 4 possible types:

• Work Session 1: Task A in LRP - Task B in SMACH
• Work Session 2: Task A in SMACH - Task B in LRP
• Work Session 3: Task B in LRP - Task A in SMACH
• Work Session 4: Task B in SMACH - Task A in LRP

We assign a subject to a work session in a way that, in the
end, we have a similar number of subjects for every type of
work session. Every work session has an approximate dura-
tion of 4 hours, with each task an approximate duration of
2 hours. We included a 15 minutes break between the two
tasks to help to avoid that the subject was too tired at the
end of the experiment. To make the experience more com-
fortable for the subject, we offered beverages and candies.
In addition, to motivate subjects to participate in this long
experiment, we give a monetary incentive of approximately
7 EUR and announced that we will gather all subjects and
offer them pizza when all experiments are completed.

The activity of each work session is structured as follows:

• Answer a questionnaire with personal information and
background. We call this phase Pre-Questionnaire phase

• Read description of the system used in the first task. We
call this phase Warm-up phase for the first task

• The first system is evaluated where the subject should
answer a questionnaire. This is the Evaluation phase for
the first task

• 15 minutes break
• Warm-up phase for the second task
• Evaluation phase for the second task
• Answer a questionnaire with qualitative information

about the subject and the experiment itself. We call this
phase Post-Questionnaire phase

Pre-Questionnaire Phase In this phase we ask the subject
to fill out a form with personal information. This form is
anonymous and we do not collect information that allow us
to identify the subject completely. For example, we asked
for the age and the education level of the subject. Besides,
we also asked for his/her previous knowledge of several
tools used in the experiment. This information is important
because we need to know if people with similar backgrounds
have similar results in the experiment.

Warm-up Phase The subjects may not be used to program
robotic behaviors using nested state machines. To achieve

3 2016/9/22



a sufficient level of knowledge such that the participants
are prepared for the study, before starting a task we give
the subject reference material of the system to be used.
The reference materials for LRP and SMACH explain a
simple example that gives the required knowledge of the
features that are going to be used in the experiment itself.
For both kinds of reference materials this example is the
same. The reference material can be used by the subject in
the experiment at any time. The materials also contain an
explanation of the communication API to the robot used by
the program.

At the end of every material there are two exercises for
the subject to resolve. The exercises are about extending the
example presented in the reference material. The exercises
are focused on several features that are mandatory for the
subject to know before doing the experiment. These features
are:

• Creating a state
• Adding a state, i.e. adding the necessary transitions to

make the state reachable in the program
• Sending data to the robot
• Receiving data from the robot

With these exercises we make sure that the subject un-
derstands. The reference material is optional to read, but the
resolving of the exercises is mandatory.

Evaluation Phase For the evaluation we prepared one
computer with two screens. One screen shows the simu-
lated robot and the communication interface between the
subject and the robot, we call this screen the Robot Space.
The second screen shows the source code and extra features
that the systems may provide, e.g. a visualization. We call
this screen the Development Space.

For the LRP system, the Development Space contains the
IDE and a window showing all the communication channels
used by the program to the robot. In the IDE the developer
can see the source code of the program and the live visu-
alization. For the SMACH system, the Development Space
has the source code in a Sublime Text editor 6 and a terminal
with two tabs. One of the tabs is ready with the command
to run the program and the other tab is ready with the com-
mand to open the run-time visualization. When it is opened,
it is also displayed in the Development Space.

For both tasks we give a questionnaire to the subject. The
subject should try to understand the program to answer the
different questions of the questionnaires. At the end of each
task, we collect the questionnaire to see how many correct
answers the subject has, and also note how much time the
subject takes to finish the questionnaire. The contents of the
questionnaires are described in Section 3.4.

There may be a learning effect in this experiment since
subjects may do better in the second task because they al-

6 https://www.sublimetext.com

ready answered the first one, and have experience with what
is shown in the robot space. To reduce this possible bias,
the work sessions were designed to use a cross-evaluation
system, where a group of subjects, for example, first work
in Task A in LRP, then Task B in SMACH. This group is
complemented by another group of subjects that first work
in Task B in SMACH, then Task A in LRP.

Post-Questionnaire Phase After both tasks are completed,
i.e. at the end of the experiment, the subject is asked to fill a
final form. In this form we ask for qualitative data about the
experiment, to be able to establish the feeling of the subjects
about the experiment, the different systems used and their
results. This includes, amongst others, the following kinds
of questions:

• Time pressure: We ask which if the subject felt any time
pressure. Even though the experiment did not have an
explicit time limit, subjects may feel pressure because
of the duration of the experiment. This also gives us an
insight on how comparable the tasks are.

• Difficulty of tasks: For each task, we ask how difficult
the subjects find solving the tasks. We use a five-point
Likert scale where 1 means the task is Extremely easy
and 5 means the task is Extremely Hard.

• How easy it is to understand programs written in a
system: For LRP and SMACH we asked the subject how
easy it was to understand the program in that particular
system, using the same scale as the previous question.
This gives us insight about how the subjects feel using
the systems, without comparing the systems themselves.

• Comparing systems: We ask whether the first tool is bet-
ter than the second tool for that task (phrased in those
terms to reduce acquiescence bias). This is the only ques-
tion that explicitly compares both systems and asks the
subjects for a preference. Here we also use a five-point
Likert scale: when subjects mark 1 they Strongly Dis-
agree with the statement (the first tool is better than the
second tool), and subjects mark 5 when they Strongly
Agree with that statement.

• Use the system again: For each system, we ask if the
subject would use the system again to work with robotic
behaviors. These are two separate questions since the
same subject may want to strongly use both systems in
the future, for example. We use the same five point Likert
scale of agreement as above.

• Extra comments: At the end we give the subjects a space
where they can give us comments and feedback about the
experiment, the systems (LRP and SMACH), the tasks
and anything the subject may want to share.

3.4 Questionnaire
For each of the tasks the subjects answered a question-
naire that serves to measure how well they understand the

4 2016/9/22



program. Each questionnaire has 17 questions, designed to
cover the different strategies we expected the subject would
use in a program comprehension task. The questions for the
different strategies are as follows:

• Easy to solve using only the visualization.
• Focusing on the states of the machine and the nested

machine, i.e. focusing in the behavior of the robot.
• Focusing on the transitions of the machine and the nested

machine:

A specific question about how much time the program
waits before or after something happens.

Questions about what should happen in the program
to make the program go from one state to another.

• A specific question about a behavior of the program that
involves a specific execution path.

• A specific question about looking at program variables.
• Questions only answerable by running the program.

Note that most of the questions can also be answered by
using other strategies. For example, since the visualization is
a graphical representation of the source code, the questions
that are easy to answer using the visualization may be an-
swered by reading the source code as well. We however did
design some questions that can only be answered by run-
ning the program. This is because we wanted the experiment
to treat the complete running system such that some of the
properties of live programming come into play. If we did not
have these questions, the questionnaire may be answered by
looking at a static representation of the visualization and the
source code only, where it does not matter if the system is a
live programming environment or not.

There may be a bias where, by grouping questions ac-
cording to the solution strategy, subjects may notice the com-
mon solution strategy and stick to using that strategy. To re-
duce this possible bias, we randomized the order of ques-
tions in the questionnaire.

When evaluating the answers, we simply counted how
many right answers the subject had. For each right answer
we add one point and a wrong answer does not add any point.
There are some questions of the questionnaire where sub-
jects had to justify their answers. Whenever the justification
of an answer is correct, but they still mark a wrong answer,
we add half a point.

3.5 Pilot Studies
As part of the design of the experiment we first performed
two small pilot studies.

The first pilot was performed on two subjects. As a result,
we improved the original tasks since they were considered
too easy by the test subjects. Moreover, this pilot revealed
the importance to have obfuscated names in the programs.
After we improved the tasks and the questionnaire we invited

2 other subjects to participate in a second pilot. This instance
allowed us to improve some questions of the experiment
and made them more clear. We also measured the time and
checked the overall duration of the experiment.

The pilot of the experiment also gave the necessary prac-
tice and confidence to the supervisor of the experiment. He
learned how to carry out the experiment and to behave as an
impartial being, only answering technical questions without
preferring one system over the other.

4. Results
4.1 Participant Profile
We have 8 test subjects, all students from two careers at the
engineering faculty of the University of Chile. All subjects
are at least in their fourth year, have an interest in robotics
and some have taken elective courses in the area of robotics.
Six students are undergraduate students, 2 of them are grad-
uate students. There are 5 students from Computer Engineer-
ing and 3 students from Electrical Engineering.

2 of the subjects state that they have a Beginner level of
SMACH, 3 of them state that they have a Knowledgeable
level of LRP. The other subjects state that they do not have
any knowledge of LRP or SMACH, however, all of them
state that they have knowledge of Python, from Beginner to
Advanced. 2 of the subjects are female, one is from Com-
puter Engineering and one is from Electrical Engineering.

4.2 Quantitative Results
We present the raw data of the experiment in Table 1. The
LRP and SMACH columns are the score obtained on the
questionnaire for the tasks done in LRP and SMACH re-
spectively. The table then presents the time to complete the
tasks done by LRP and SMACH. The last column shows the
type of work session done by the subject (as explained in
Section 3.3).

To analyze these results, we consider four data combina-
tions: score between Task A and Task B, time between Tasks
A and Task B, score between SMACH and LRP, and time
between SMACH and LRP. We first analyze the normality
of the data, as this may impact the statistical test to employ.
Running the Shapiro-Wilk test on our four data combina-
tion indicates that only two combinations are normally dis-
tributed: (i) the scores and times to complete Task B and (ii)
the scores and times of SMACH. Since not all the data are
normally distributed, we use the Man-Whitney test, which is
non-parametric and therefore able to cope with non-normal
data sets. None of the four data combinations however indi-
cates a significant difference, the results are not even close
as the smallest P value is 0.4.

There is no significant difference in score nor time to
complete the tasks using LRP and SMACH. As a conse-
quence, the observed difference are due to the experiment
setting, and cannot be related to the treatment (SMACH or
LRP). Moreover, the average and median of each of the four

5 2016/9/22



Part. LRP Correctness SMACH Correctness LRP Time (min) SMACH Time (min) Work Session
1 16 16 100 76 B in LRP, A in SMACH
2 14 13 49 96 B in SMACH, A in LRP
3 16,5 15 47 33 A in LRP, B in SMACH
4 15,5 16 48 54 A in SMACH, B in LRP
5 16 15 55 60 B in SMACH, A in LRP
6 10 12 47 34 A in LRP, B in SMACH
7 15 10 45 55 A in SMACH, B in LRP
8 14 15 53 50 B in LRP, A in SMACH

Table 1. Results of the controlled experiment

data combinations indicates that there is no tendency that
could be increased by including more participants. We there-
fore conclude that the number of subjects in the experiment
is sufficient to support our claim of there being no significant
difference.

Lastly, we notice how similar the tasks are in the con-
trolled experiment. The time and the number of right an-
swers are similar. This shows that the two tasks are compa-
rable, reducing a bias where a task could be easier or harder
than the other.

4.3 Qualitative Results
The questionnaire answered by the subjects after finishing
the experiment gives us qualitative information about how
the subjects feel with the systems. Most of the subjects did
not feel any time pressure, with 5 subjects answering that
they did not feel any pressure at all. Only 1 subject felt
pressure about time, however the results of this subject were
similar to the other subjects.

An important qualitative result is that every subject in the
experiment thinks that is easy to understand programs writ-
ten in LRP. In contrast, with SMACH there are mixed opin-
ions: 5 subjects think that is easy to understand programs
using this platform and 3 subjects think that it is hard. More-
over, the subjects also think that LRP is better that SMACH
with an average result of 4,12. When asked if they would
prefer to use one system over the other, LRP also has better
results, with an average score of 4 against an average result
of 3 for SMACH.

Some positive observations of the subjects (translated
from Spanish) are: “In LRP there are less concepts, so it
is easier to understand”, “LRP was easier to understand”,
“In LRP the code was easier to undersand”. There is also a
comment about a specific feature in LRP that connects the
visualization with the source code by clicking on an element
of the visualization: “The visualization of LRP has a nice
integration with the source code”. However, there are some
positive comments about the SMACH visualization, where
LRP falls short: “The SMACH visualization is tidy and you
can see everything, even the state of the nested machine”,
“The SMACH diagram was very easy to follow, instead, the
LRP diagram was harder to follow”.

4.4 Conclusions
In this experiment we measured how easy it is to understand
complete programs for the behavior layer of robots using
2 different platforms: LRP and SMACH. To do this, the
subjects of the experiment studied 2 different programs, one
in LRP and one in SMACH. To measure the understanding
of the programs we gave the subjects a questionnaire to
answer.

The quantitative results of the experiment show us that
there is no difference between using LRP or SMACH to un-
derstand complete programs for robotic behaviors, both con-
sidering correctness and time taken. In contrast to this, the
qualitative results of the experiment reveal that the subjects
of the experiment thought that it is easier to understand pro-
grams written in LRP than in SMACH. They also stated that
they prefer to use LRP over SMACH.

In summary, while the users’ opinions about the different
systems confirm the tenet of live programming yielding a
better developer experience, the qualitative data show that
in this experiment the developers’ performance is actually
unchanged.

5. Threats to Validity
As in any experiment, there are several threats to validity in
this work. We present the most important ones here.

Inexperience The inexperience of the researcher supervis-
ing the experiments may be a threat for the experiment itself.
To minimize this, the researcher had several opportunities in
the pilot to test not only the treatment of the experiment, but
also to test how he interacts with the subjects.

Time Extension The experiment itself has a duration of
approximately 4 hours. In this time the subject may get tired,
leading to worse results in the second task. While the subject
were performing the tasks we were constantly supervising to
check if they were performing worse over time, which was
not the case. Moreover, we provided them with beverages
and food (candies), to lessen fatigue. At the end of the
experiment we asked how the subject felt, if he/she was tired
or not. All subjects stated that they did not feel tired at the
end of the long experiment, even more, they stated that they
found the experiment fun.

6 2016/9/22



Type of Participants All participants in the experiment are
students studying a topic related to robotics. The use of stu-
dents may lead to a bias in different types of computer sci-
ence experiments, but this is however not so in robotics. The
reason for this is that robotics is a research area where a large
amount of work is done in universities with students of dif-
ferent areas of knowledge and different degrees, i.e. exactly
the type of users we used in our study. We do not claim that
this experiment could not be improved by calling subjects of
other areas. We claim that, even while the experiment can be
improved, we believe the results of using students is a good
measure of developers in the robotics world.

Previous Knowledge of Participants We had multiple par-
ticipants with different backgrounds. While we invited peo-
ple that are involved with robotics they may not have had the
necessary knowledge to complete the experiment, especially
given that one of the systems (LRP) is quite new. We how-
ever made sure that every participant has the required level
of base knowledge by first performing the warm-up phase.

Effect size An effect size is a quantitative value associ-
ated to a statistical measurement. The higher the number of
subjects considered, the stronger the correlation effect is be-
tween two or more variables. We have considered 8 subjects
in our experiment and no significant difference was identi-
fied both in time and score between SMACH and LRP. Al-
though our measurements indicates a very slight difference
(e.g. the mean score of SMACH exercises is 13.85 and 14.80
for LRP), no conclusion can be drawn. Significantly increas-
ing the number of subjects may lead to a representative dif-
ference. However, no difference is perceived with 8 partici-
pants, so the alternative hypothesis of our control experiment
is not verified.

Definition and Artificially of Tasks The tasks defined for
the experiments may benefit one system over the other. To
avoid this, when we defined the tasks we made sure to not
use specific features of one system that may improve its
performance. Moreover, the tasks were defined to use several
features of both systems so the program were non-trivial. For
example, the tasks use nested machines and several paths
per states. Even while the tasks are artificially created, they
were designed to solve possible real life problems, such a
delivering an object or a message sending robot.

6. Related Work
To the best of our knowledge, there has yet been no extensive
report of a study of the productivity advantages of live pro-
gramming for understanding existing code. Related work is
restricted to live programming systems that have presented
some form of user study and studies that consider code cre-
ation (but not code understanding).

As part of the validation of Interstate (Oney et al. 2014)
the authors performed a comparative laboratory study where
Interstate was tested against JavaScript. This study had 20

participants and consisted of 2 tasks where participants
needed to make modifications and express new behaviors.
There is however no description of how the experiment was
conducted, nor how the taks were divided amongst the par-
ticipants. In this study participants were significantly faster
using Interstate than JavaScript. The conclusions of the ex-
periment were that Interstate is faster than JavaScript to
make modifications to already existing programs and to ex-
press new behaviors. There is however no report of a study
that measures the efficiency of Interstate in understanding
already existing code.

The work of Wilcox et al. (Wilcox et al. 1997) revealed
that continuous visual feedback in direct manipulation of
programs helps in the accuracy of debugging certain tasks.
They compare a version of Forms/3 (Burnett et al. 2001),
which is live, against another version with immediate feed-
back removed. In this experiment there are 29 subjects,
where half of them work in two different tasks using first
the live version and then the non-live version, while the
other half do exactly the opposite. They use two completely
different tasks for this study, one to emphasize a graphical
program, and the other to emphasize a mathematical pro-
gram. The degree of improvement, as the authors conclude,
depends on the type of problem, the type of user, and the
type of the bug.

Kramer et al. (Kramer et al. 2014) also analyzed code
creation, complementing the work of Wilcox et al. (Wilcox
et al. 1997). In this experiment they compare a live version
of JavaScript with a non-live version of JavaScript, both ver-
sions using Brackets, an IDE for JavaScript. In this work
the authors analyzed 10 subjects where each subject should
solve three different tasks: one to parse an RSS feed, one
to convert between two object representations of a date, and
one to implement Dijkstra’s algorithm. This experiment uses
a between-groups design, i.e. every group works with a dif-
ferent treatment. The authors noticed that while live pro-
gramming did not speed up the time to complete a task, it
did significantly decrease the time fixing bugs introduced
while writing the task. They state that they found no indi-
cation that live programming speeds up the process of code
creation because of the small sample size and/or that the data
is overshadowed by inter-subject differences.

In addition to the above small studies on whether live
programming improves the efficiency in development, there
are three studies about how developers behave in a live pro-
gramming environment (Wilcox et al. 1997)(Kramer et al.
2014)(Hancock 2003). These show that developers interact
more with the live systems by performing more changes in
programs or by regularly checking the code for correctness.
The rationale is that this is because these systems promote
more interaction between developers and their programs.

Lastly, Hundhausen and Brown (Hundhausen and Brown
2007) investigated the impact of continuous feedback on
novice programmers. To do this each subject was exposed

7 2016/9/22



to three different system: No feedback, self-select feedback
and automatic feedback. In the first system the subjects men-
tally simulated the program, in the second the subject ex-
plicitly requested syntactic and semantic feedback, and the
third system the subject had feedback with every keystroke.
The subjects completed three tasks that involved creating,
populating and iterating over arrays. The authors found that
even when subjects did significantly better in the systems
with feedback, there was no difference between both feed-
back treatments. Note that liveness does not only implies
continuous feedback, but this feedback needs to be mean-
ingful (Hancock 2003), and that is one of the conclusions
of this work: “rather than coming up with ways to facilitate
liveness (in terms of feedback), programming environment
designers ought to be putting their efforts into designing ef-
fective semantic feedback that benefits users”.

7. Conclusion and Future Work
In this paper we reported on a controlled experiment us-
ing within-subjects and repeated measures to gauge whether
code written in the live programming language LRP is eas-
ier to understand than code using the SMACH conventional
language and toolkit for robotic development. To the best of
our knowledge, this is the first in-depth study of code com-
prehension of existing code in a live programming system.

We implemented two different robotics tasks in each
system, which were run under simulation. Work sessions
consisted of a pre questionnaire, the two tasks and a post
questionnaire. Each task contained a warmup and evalua-
tion phase. The warmup phases provided a description of
the system that is used in the evaluation phase. In the eval-
uation phase the subjects answered a questionnaire with 17
code comprehension questions. Work sessions lasted ap-
proximately four hours, with a 15 minutes break between
each task.

We performed the study with 8 subjects, all of them en-
gineering students with six of them in their fourth year of
undergrad or later and two graduate students. The quantita-
tive results of the experiment show us that there is no dif-
ference between using LRP or SMACH to understand com-
plete programs for robotic behaviors, both considering cor-
rectness and time taken. Moreover, the average and median
of the data indicates that there is no tendency that could be
increased by including more participants. As a result, even
though the number of participants is low, we can say that
there is no significant difference in score nor time to com-
plete the tasks using LRP and SMACH. Considering the
qualitative results, every subject in the experiment states that
is easy to understand programs written in LRP whereas with
SMACH 3 subjects find it hard. Also, the subjects think that
LRP is better than SMACH and would prefer using it over
SMACH.

These results expose an apparent contradiction: the users’
opinions about the different systems confirms the tenet that

live programming yields a better developer experience but
the hard data shows that this does not result in more effec-
tive or efficient code understanding. Instead, the quantitative
data show that the developers’ performance is actually un-
changed when performing code comprehension of existing
code. This apparent contradiction is remarkable and merits
further study.

Our future work hence consists of further studying the
performance of developers with LRP versus SMACH. Our
next experiment will treat code development, and subse-
quent experiments will focus on the different features of LRP
versus SMACH to establish what their effect is on developer
performance and experience.

References
M. Burnett, R. Walpole Djang, J. Reichwein, H. Gottfried, and

S. Yang. Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm. Journal of Functional
Programming, 11:155–206, 3 2001. ISSN 1469-7653.

M. Campusano and J. Fabry. Live robot programming: The lan-
guage, its implementation, and robot API independence. Science
of Computer Programming, 2016. To appear.

J. Fabry and M. Campusano. Live robot programming. In
A. Bazzan and K. Pichara, editors, Advances in Artificial In-
telligence – IBERAMIA 2014, number 8864 in LNCS, pages
445–456. Springer-Verlag, 2014. doi: http://dx.doi.org/10.1007/
978-3-319-12027-0 36.

A. Goldberg and D. Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley, 1980.

C. M. Hancock. Real-time programming and the big ideas of
computational literacy. PhD thesis, Massachusetts Institute of
Technology, 2003.

C. D. Hundhausen and J. L. Brown. An experimental study of
the impact of visual semantic feedback on novice program-
ming. Journal of Visual Languages & Computing, 18(6):537–
559, 2007.

J.-P. Kramer, J. Kurz, T. Karrer, and J. Borchers. How live cod-
ing affects developers’ coding behavior. In 2014 IEEE Sym-
posium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 5–8. IEEE, 2014.

S. Oney, B. Myers, and J. Brandt. Interstate: a language and
environment for expressing interface behavior. In Proceedings
of the 27th annual ACM symposium on User interface software
and technology, pages 263–272. ACM, 2014.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source Robot Op-
erating System. In ICRA workshop on open source software,
volume 3, page 5, 2009.

S. L. Tanimoto. Viva: A visual language for image processing.
Journal of Visual Languages & Computing, 1(2):127–139, 1990.

E. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R.
Cook. Does continuous visual feedback aid debugging in direct-
manipulation programming systems? In Proceedings of the
ACM SIGCHI Conference on Human factors in computing sys-
tems, pages 258–265. ACM, 1997.

8 2016/9/22


