
On the Use of Type Predicates in Object-Oriented
Software: The Case of Smalltalk ∗

Oscar Callaú1 Romain Robbes1 Éric Tanter1 David Röthlisberger2 Alexandre Bergel1

1PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
{oalvarez,rrobbes,etanter,abergel}@dcc.uchile.cl

2School of Informatics and Telecommunications
Faculty of Engineering

Universidad Diego Portales
davidroe@mail.udp.cl

Abstract
Object-orientation relies on polymorphism to express behavioral
variants. As opposed to traditional procedural design, explicit type-
based conditionals should be avoided. This message is conveyed
in introductory material on object orientation, as well as in object-
oriented reengineering patterns. Is this principle followed in prac-
tice? In other words, are type predicates actually used in object-
oriented software, and if so, to which extent?

Answering these questions will assist practitioners and re-
searchers with providing information about the state of the practice,
and informing the active research program of retrofitting type sys-
tems, clarifying whether complex flow-sensitive typing approaches
are necessary. Other areas, such as refactoring and teaching object
orientation, can also benefit from empirical evidence on the matter.

We report on a study of the use of type predicates in a large
base of over 4 million lines of Smalltalk code. Our study shows that
type predicates are in fact widely used to do explicit type dispatch,
suggesting that flow-sensitive typing approaches are necessary for
a type system retrofitted for a dynamic object-oriented language.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Language; Design

Keywords Flow-sensitive typing; Object-oriented languages; Type
predicates

∗ This work is partially funded by FONDECYT Projects 1110051,
1120094, 1140068 and 11110463.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3211-8/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661088.2661091

1. Introduction
The object-oriented programming paradigm frees developers from
manual dispatch based on explicit type predicates by relying on
polymorphism. As any good object-oriented programming book
tells us, messages are sent to objects and these objects react ap-
propriately. This brings benefits in extensibility, as type case anal-
yses do not need to be extended whenever a new kind of object is
added and understands the message. Polymorphism based on dy-
namic method dispatch makes type predicates obsolete—at least in
theory. However, recommendations, like in Effective C++1, as well
as the “Replace Conditional with Polymorphism” and “Introduce
Null Object” refactoring patterns [10, 18] suggest that program-
mers do not always follow the principle, have to be reminded re-
peatedly, and need support to follow it more closely and make their
code “more object-oriented” so as to enjoy the promised benefits.

Empirically studying the use of type predicates can inform both
the general object-oriented programming community and the active
research program of designing type systems for existing dynamic
languages (e.g. [11, 13, 21, 31, 32, 34]), many of which are object
oriented. Indeed, retrofitting a type system onto an existing lan-
guage demands to properly accommodate the programming idioms
embraced by programmers. Failing to do so compromises adoption
of the retrofitted type system. Hence, informing about the preva-
lence of type predicates and their common usages are important for
both type system designers and the community in general.

Recently, Tobin-Hochstadt and Felleisen have made a very good
case in favor of flow-sensitive typing to accommodate control-
related programming idioms in the context of Racket, a dialect of
Scheme [30, 31]. A flow-sensitive type system such as occurrence
typing is able to account for the type information gathered in the
use of type predicates in conditionals. For instance, consider the
following Scheme definition:

; x is a number or a string
(define (f x)

(if (number? x)
(add1 x)
(string--length x)))

The function f accepts either a number or a string; if given a
number, it adds 1 to it; if given a string, it returns its length.

1 Anytime you find yourself writing code of the form “if the object is of type
T1, then do something, but if it’s of type T2, then do something else,” slap
yourself [16]—Scott Meyers.

Knowing if the argument is a number is determined by the function
number? (of type Any → Boolean). In order to type this method,
the type system must be able to understand that the application
of add1 (of type Number → Number) is valid, because at this
point x is necessarily a number; similarly for the application of
string--length.

Occurrence typing was later extended with logical types in order
to account for the logical combination of predicates in condition-
als [32], e.g. (or (number? x) (string? x)). The resulting type sys-
tem is expressive but complex. In addition, scaling to a language
with objects and mutable state requires even more complex flow
analysis [11, 21, 34].

Guha et al. [11] propose flow typing, a type system for JavaScript
that relies on control flow analysis to properly type variables in
control flow statements, for instance:

var state = undefined;
...
function updateState() {

if (typeof state === ”undefined”) {
state = 0;

}
return state + 1;

}

The above code is the classic example of a lazy initializer. The
function updateState checks if the variable state is undefined and if
so then state is initialized with 0, otherwise, state is a number and
it can be (safely) incremented.

Flow-sensitive typing approaches are not only beneficial for
retrofitted type systems, but also for existing type systems. This
is the case of Guarded Type Promotion [34], a type system exten-
sion for Java that tracks instanceof occurrences in control flow state-
ments to remove unnecessary casts. For instance:

if (obj instanceof Foo) {
((Foo) obj).doFooStuff();

}

In Java, casting the variable obj to Foo is necessary to properly call
method doFooStuff. However, with Guarded Type Promotion, the
variable obj can be safely considered an instance of Foo, and hence
all Foo’s methods can be called. An improved version of the code
is:

if (obj instanceof Foo) {
obj.doFooStuff();

}

The question arises whether or not these techniques are practi-
cally useful in an object-oriented setting, where type predicates are
supposedly avoided. Interestingly, most if not all object-oriented
languages provide operators to do runtime type checks, like Java’s
instanceof. Their use is however strongly discouraged, with the only
exception being for implementing binary equality methods [4]. Bi-
nary methods are indeed well-known to be hard to properly im-
plement in an object-oriented language [7]. But if flow-sensitive
typing is only helpful for equality methods, one could reasonably
argue that its complexity cost trumps its static typing benefits.

Contributions. In order to shed light on these questions, we per-
form an empirical study of the use of type predicates in the dynamic
object-oriented language Smalltalk. Smalltalk is a pure object-
oriented language: everything is an object, even classes, and control
structures are the results of sending messages2. Furthermore, the

2 Strictly speaking, basic control flow structures in Smalltalk are handled
directly by the VM for optimization purposes.

Smalltalk main libraries have been designed with a strong object-
oriented focus. Because of this, one might expect that Smalltalk
programmers tend to produce code embracing object-orientation.
We analyze 1,000 open source Smalltalk projects, featuring more
than 4 million lines of code. Our study reveals if, and how, type
predicates are used in practice. We answer the following research
questions:

RQ1: How prevalent is the use of type predicates to do ex-
plicit dispatch? This question directly addresses the main ques-
tion of this paper, with respect to how much the principle of rely-
ing upon polymorphism instead of type predicates is followed in
practice. This informs type system designers on the usefulness of
flow-sensitive typing for object-oriented programs.

RQ2: What are the different forms of type predicates used?
Are some categories largely predominant? Solving specific
problems is often easier than solving general ones. Answering these
questions allows us to understand if ad-hoc type systems handling
specific cases (e.g. non-null types [9]) would be “good enough”.

RQ3: How prevalent is the use of logical combinations of
type predicates? Logical types [32] allows type systems to prop-
erly handle type predicates composition using logical combinators,
as described above. This question sheds light on whether this tech-
nique would be of significant value in object-oriented software.

RQ4: Are identified type predicates constant? Object-oriented
languages usually support mutable state, which makes occurrence
typing unsound if a type predicate is not constant. Evaluating the
prevalence of this issue informs if more complex techniques like
flow typing [11, 21, 34] or typestate checking [8, 27] are necessary.

Structure of the paper. In Section 2 we describe the experimental
corpus and methodology as well as a classification of discovered
predicates. The following four sections report on the four research
questions above, respectively. Section 7 discusses the threats to
validity, Section 8 reviews related work, and Section 9 concludes
with recommendations for type system designers and practitioners.

2. Experimental Setup
This section describes the corpus of projects we are analyzing, the
methodology applied to find predicates, and a classification of the
discovered predicates.

2.1 Corpus
We analyze a body of 1,000 projects, which we used previously
in a study of the use of reflective features [5]. To exclude small
or toy projects we ordered all projects in the entire corpus by
size (LOC) and selected the 1,000 largest ones. Our corpus is
a snapshot of the Squeaksource (http://www.squeaksource.
com) Smalltalk repository taken in early 2010. Squeaksource was
the de facto source code repository for open-source development in
the Squeak and Pharo dialects at the time we analyzed the projects3.
The corpus includes a total of 4,445,415 lines of code distributed
between 47,720 classes and 652,990 methods. The largest project
is Morphic, with 124,729 lines of code.

In order to analyze the projects, we use the Ecco model [14],
a lightweight representation of software systems and their versions
in an ecosystem, allowing for the effective analysis of interdepen-
dent systems. We extend our previous framework [5] to statically

3 Currently, other repositories like Smalltalkhub (http://www.
smalltalkhub.com) and Squeaksource3 (http://ss3.gemstone.com)
are mainly used by the community; most of the projects in these repositories
are simply updated versions of the ones that are in our corpus.

http://www.squeaksource.com
http://www.squeaksource.com
http://www.smalltalkhub.com
http://www.smalltalkhub.com
http://ss3.gemstone.com

isCircle
isSquare

Figure

isCircle
Circle

isSquare
Square

isMorph
Object

isMorph
Morph

Figure 1. Examples of polymorphic type predicates.

trace the declarations and usages of type predicates in the software
ecosystem4.

2.2 Finding Predicates and Their Usages
What is a type predicate? We are interested in tracking usages
of Smalltalk’s equivalent of Java’s instanceof, named isKindOf:,
or some variants thereof. Also as in Racket, we are interested
in functions like string?, which in Smalltalk would be defined as
polymorphic methods (e.g. isString). When there are multiple ways
to express the same check, we do our best to detect all forms. We
distinguish four categories of predicates, all described below.

2.2.1 Nominal
Smalltalk natively provides a number of ways to check the type
of an object. This category corresponds to nominal type checks,
i.e. related to the actual class of an object. The equivalent of
Java’s instanceof operator is called isKindOf:. A strict version,
isMemberOf:, checks if an object is a direct instance of the given
class (without considering subclasses). For example:

'a text' isKindOf: Object ”returns true”
'a text' isMemberOf: Object ”returns false”

Additionally, we also count type checks performed through explicit
class comparison (reference equality ==, user-defined equality =,
and non-equality ∼=). Eg:

'a text' class == String ”returns true”

2.2.2 Structural
Like many other dynamically-typed object-oriented languages,
Smalltalk also supports structural type checks using respondsTo:
or canUnderstand:. These checks are used to determine if an object
understands a given message, regardless of its implementing class.
For instance:

true respondsTo: #not ”returns true”
Boolean canUnderstand: #+ ”returns false”

2.2.3 Polymorphic
Polymorphic type predicates are methods that play the role of type
discriminators, just like string? in Racket. Figure 1 shows two class
hierarchies with type predicates. In class Figure, both isCircle and
isSquare return false; they are overridden in their respective sub-
class to return true. The case of Morph is similar, but showcases
the use of class extensions (aka. open classes) in Smalltalk. The
isMorph method is added to Object and is overridden in Morph. In
Smalltalk, the Object class is routinely extended with such external
methods (57% of the packages contained in the Pharo distribution
extend a class defined in another package and 9% of Pharo pack-
ages extend Object).

4 This extension is available at http://ss3.gemstone.com/ss/TOC/

This category of predicates is therefore user-extensible, and
we need a heuristic to detect them. Following the Smalltalk nam-
ing conventions, a type predicate is a selector (method name in
Smalltalk jargon) that follows the pattern isXxxx—the prefix is the
verb is, followed by any camel-case suffix. Often the suffix is the
name of a class (or part of it), but it can be any other string. We
only consider methods that do not have any arguments. The body
of a type predicate method should return a literal boolean in all of
its implementations.

The above heuristic is admittedly very conservative. However,
if we include all isXxxx methods, some of them correspond to state
rather than type abstractions; and the boundary can be hard to draw.
For instance, isEmpty can be implemented as a state predicate or as
a type predicate depending on the chosen design.

2.2.4 Nil predicate
Nullity checking is supposedly a prevalent activity in object-
oriented languages, which has triggered a number of efforts to
design languages with non-null types [9]. Smalltalk provides the nil
value as a unique instance of the singleton class UndefinedObject.
The nil predicate isNil is in fact implemented as a polymorphic
predicate. We group all nil-related predicates provided by the lan-
guage (e.g. notNil), as well as related control flow expressions,
such as ifNil:, ifNotNil:, etc. Additionally, we also include explicit
nil equality checks in this category, e.g. obj == nil.

3. Prevalence of type predicates
To address the question of the prevalence of type predicates and
their usage, we start by reporting on the results of our predicate
detection algorithm, and then classify predicate usages in order to
refine our analysis.

3.1 Basic statistics in Squeaksource
Our predicate detection algorithm identified 1,524 different poly-
morphic predicates. This represents 0.6% of all selectors (method
names) in the corpus. As mentioned above, we detect isXxxx meth-
ods regardless of whether Xxxx actually corresponds to a class name
(or part of one). We find that almost one out of five predicates do not
match a class name (19.1% – 245). These predicates are important
because they represent (type) abstractions that crosscut the class
hierarchy; in Java, one would expect these to be represented as in-
terfaces. Examples include isShape, isDisplayable, and isAnnotation.

All predicates (nominal, structural, polymorphic and nil) are
used 107,897 times in our corpus, spread out in 971 out of the
1,000 projects we considered. Only 631 usages (0.6%) occur inside
equality methods (=, ∼=, closeTo:, and literalEqual:), suggesting
that the recommendation of using type checks only in equality
methods [4] is rarely followed in practice. The issue is hence
quite widespread and awareness of it needs to be raised among
practitioners. Additionally, this result suggests that flow-sensitive
typing would be helpful beyond equality methods, if these usages
are indeed in a control flow or similar statement, e.g. an assertion.

These usages described above could occur in object oriented
software due to several reasons. Here, we present a non exhaustive
list beyond design faults.

• Legitimate usages. Some usages are legitimate and cannot be
avoided mainly because of limits of the language.

• Convenience. In some scenarios, especially in small operations,
it may be simpler to use type based dispatch rather than creating
polymorphic methods.

• Evolution. Some authors [12, 19, 25, 33, 36] report that object-
oriented software not only evolve by adding new classes, but

Usage context Usages (%) Selected (%)
Dispatch 86,561 (80.2%) 79,837 (92.2%)
Collections 3,179 (2.9%) 3,179 (100%)
Assertions 10,964 (10.2%) 10,220 (93.2%)
Forward 4,994 (4.6%) 0 (0%)
Others 2,199 (2%) 0 (0%)
Total 107,897 (100%) 93,236 (86.4%)

Table 1. Usage categories of type predicates with their refine-
ments.

also by adding new methods. Some type predicate usages could
indicate an anticipation of this evolution.

We actually do not include all 107,897 usages in our study, be-
cause some usages do not impact the flow of the program in a way
directly observable to our static analysis. The next section intro-
duces the classification of predicate usages on which our refinement
is based.

3.2 Usage categories
We classify usage contexts of type predicates as follows:

• Dispatch. The predicate is clearly used to drive control flow in
ifTrue:ifFalse, whileTrue, doWhileTrue, etc. Eg:

figure isCircle ifTrue: [figure radius] ifFalse: [figure width]

This correponds to the classical examples where flow-sensitive
typing is beneficial.

• Collections. The predicate is used to filter or test elements
inside a collection, with select:, reject:, detect:, allSatisfy:, etc.
For instance: figures select: #isCircle returns all circles in the
figures collection. A flow-sensitive type system can then keep
track of this information, validating invocations of circle-only
methods on elements of the returned collection.

• Assertions. The predicate is used in an assertion context, such
as assert or deny. Eg: figure isCircle assert. This expression is
similar to a conditional where the false branch raises an error.
The next statement after the assertion can in fact use the fact
that figure is a circle.

• Forward. The predicate is used to define another predicate,
e.g. Figure>>isOval ↑ self isCircle

• Others. The catch-all category for usages that do not fit in any
of the previous ones.

Table 1 shows the number of raw usages and the percentages
of usages (second column) categorized by usage context (first col-
umn). Unsurprisingly, simple conditional dispatch is the most com-
mon usage idiom, with 80.2% overall usages, and a presence in
94.8% of the projects. Then comes Assertions at 10.2%, showing
that type predicates are often used in testing contexts, or in pre/-
postconditions. The three other categories are relatively scarce.

A Note on Collections. The Collections category represents only
2.9% of usages. This low value was actually contrary to our expec-
tations. To better understand why, we performed a dynamic analysis
of the collections present in the standard Pharo Development Image
(version 1.2.1 of Pharo, with the Seaside web framework, and re-
lated sub-projects). We analyzed all collections in the image to de-
termine how many are strictly homogeneous (i.e. filled with objects
of the exact same class). We found that out of 554,262 collections,
94.6% are strictly homogeneous. While the results are not represen-
tative of all the projects (only the default image and Seaside), and
some predicates may discriminate on the state of the objects (as we

explore in RQ4), the homogeneity of collections appears to be a
good reason why type predicates are seldom used when operating
over collections.

3.3 Refinement
For the remaining of this study, we keep only a selected group
of predicates from the Dispatch, Collections, and Assertions cat-
egories, as we want to focus only on those predicates whose flow-
sensitive typing approach can benefit programmers (third column
in Table 1).

In the Dispatch and Assertions categories, we filter out those
predicates where flow-sensitive typing may not be relevant, as
described below. The static analyzer tracks locally if there is at least
one usage of the receiver in the statements or expressions following
the predicate check. This heuristic is an approximation, but more
powerful analysis is very expensive to perform in Smalltalk, see a
more detailed discussion in Section 7. Some filtered out examples
(extracted from the corpus) follow:

moduleExtension
↑ self isCPP ifTrue: ['.cpp'] ifFalse: ['.c']

initialize
”Initialize the OpenGL context, required by AmanithVG”
| renderer |
self assert: VG isNil.
renderer := self getAPIRenderer.
accelerated := renderer beginsWith: 'AmanithVG GLE'.
...

In the first method moduleExtension, the type information pro-
vided by the predicate isCPP is not used in any of the branches.
Similarly in the method initialize: The information VG isNil is not
directly exploited in the remaining statements. However, any called
method may use that information, but tracking that in a static anal-
ysis is hard to achieve.

For usages in the Collections category we decide to keep all
usages, because tracking non-relevant usages in a highly-dynamic
language like Smalltalk is complex to achieve. Furthermore, even a
high fraction of non-relevant usages would not significantly affect
our study due to the low percentage of usages in this category.

The Forward and Others categories are completely excluded
because it is not clear how these usages impact the control flow
of the program. Usages in the Forward category correspond to
the use of predicates to implement another type predicate; the
type predicate they are a part of is still referenced and counted
as a normal type predicate. We can see that there is a small, but
significant effort devoted to reusing existing predicates in order to
define others.

The last excluded category, Others, contains all usages of type
predicates that do not fit in the top four categories. Its small size,
2%, tells us that our classification is quite exhaustive: there are
no obvious categories we are missing. The results we report in
this paper will at worst be a slight under-estimation of the actual
usage of predicates. Looking at the common idioms in this catch-
all category, we found that more than half of them consist in
storing the value of a predicate in a variable for later use, or
were passed as arguments to other methods. These cases would
require a significantly more advanced static analysis to precisely
track them, hence our preference for under-estimation. Other cases
are more arcane, e.g. reflective predicate invocation, or are clearly
not predicates, e.g. a predicate is called but the returned value is
not used. The rarity of the latter case tells us that our heuristic
of considering isXxxx methods as predicate is correct, since a very
large majority of the predicates are used as type predicates.

Taken together, the three usage categories we select comprise
more than 86% of the predicate usages we encountered. From this,
we can conclude that predicates are indeed used in order to impact
the control flow in a direct way that would be easily exploitable by
a flow-sensitive type system. Alternatively, refactoring the source
code to replace conditionals with polymorphism has the potential to
reduce complexity in a large number of cases. But assertions cannot
be refactored and refactoring is not a solution for a retrofitted type
system.

3.4 Prevalence of predicate usages
After refinement, we are left with 93,236 usages of type predicates
that directly affect the control flow of programs. We now assess
whether this number means that type predicates are prevalently
used or not. We evaluate the presence of type predicate usages at
different levels of granularity: projects, classes, methods and lines
of code (Figure 2). Indeed, recent work by Posnett et al. has shown
that observations that hold at one level do not necessarily hold at
others, leading to the risk of committing an ecological fallacy [24].

0%

33%

67%

100%

LOC Methods Classes Projects

96.3%

36.9%

9.7%2.1%

Figure 2. Presence of type predicates in LOC, methods, classes
and projects.

First, how does the number of usages translate in terms of actual
prevalence in Smalltalk projects? We find that 96.3% of projects
use type predicates, i.e. not using type predicates is the exception
rather than the rule.

At the level of classes, we find that slightly more than a third—
36.9%—of the classes use type predicates as part of their imple-
mentation. This figure supports the claim that programmers use
type predicates quite commonly.

At a finer-grained level, we find that 9.7% of the methods are
using type predicates. Again, this confirms the previous finding, as
this is certainly a large minority of all the methods. Clearly, flow-
sensitive typing has the potential to provide more accurate type
information in the control flow of one out of ten methods.

But perhaps the most telling figure is the finest-grained one,
which is the density of type predicate usages per lines of code,
telling us how many lines of code we might expect to read before
encountering a usage of a type predicate. Considering that we have
referenced 93,236 usages of type predicates in the 4,445,415 lines
of code in our corpus, we find a density of 0.021 predicates per
line of code, or 2.1%. Considering a homogenous distribution,
one might expect to read around 50 lines of code to encounter a
type predicate usage. This further highlights that usages of type
predicates are a common sight in object-oriented source code, and
that better supporting them would have a practical impact on the
daily work of programmers. The advice of avoiding these type-
checks is not followed in practice.

3.5 Summary
We find many conditional dispatches based on type predicates in
source code. After filtering indirect and irrelevant usages, we find
that almost 10% of all methods do explicit type-based dispatch,
and that the density of type predicates per lines of code is 2.1%.
These findings highlight the opportunities for flow-sensitive typing
mechanisms such as occurrence types in object-oriented programs.

4. Prevalence of categories of type predicates
Beyond the overall prevalence of type predicates, we are interested
in the prevalence of specific categories of predicates, as described
in Section 2.2. Are certain categories of type predicates more com-
monly used than others? If that is the case, this allows us to make
informed decisions: varying cost and challenges in the implemen-
tation of a type system that supports it fully. Alternatively, it may
indicate that the type predicates issue is more prevalent in certain
scenarios.

4.1 Predicate categories
Table 2 shows the distribution of each predicate category (nominal,
structural, polymorphic and nil) by usages among all projects. We
clearly see the categories of predicates are not equally distributed.
The Nil predicate takes the largest share at 76% (70,875) of all
usages, nominal type predicates follow with 15.6% (14,518), poly-
morphic and structural type predicates only amount to 6.9% (6,446)
and 1.5% (1,397) of the total usages respectively.

Distribution at different levels of granularity. The analysis
above is reflected in the distribution in terms of frequencies of
presence in projects, classes, methods, and LOC, which is shown
in Table 2 as well. Most of the usages at all levels are Nil predicate
usages. As we observed above, the proportion of projects that use a
given type predicate is much higher than the proportion of classes,
methods, or LOCs. Aggregating at the project level does not give a
complete picture; it only tells us that a vast majority of projects use
nil-related predicates, but not how much they are used. Likewise,
structural predicates are used by more than a quarter of the projects,
but are used very sparsely at the class, method or LOC levels. At
the method level, nominal and polymorphic type predicates are
used in 1.5% and 0.7%, respectively, making their usages more
frequent than structural type predicates, but still fairly localized in
the corpus.

4.2 Usages context and predicate categories
Table 3 shows the usages by context and predicate category (first
group of three columns) with their respective distributions (second
and third group). The distribution of predicate categories by usage
contexts (second group) shows:

• In the dispatch context, nil predicates takes the largest share
(80.9%), nominal comes second (11.7%), and polymorphic and
structural at the end (5.8% and 1.6%, respectively). This distri-
bution has a big influence on the overall distribution, because
dispatch usages account for more than 80% of all usages.

• In the assertion context; nil predicates account for a bit more
than half of the usages (53.2%); nominal and polymorphic
predicates take almost the other half (46.4%) with 36.9% and
9.5%, respectively; finally structural predicates are rarely used
in assertions (0.4%).

• The usages in the collection context are the most interesting.
Nominal predicates take the largest share with 43.4%. Nil and
polymorphic predicates are almost equally distributed with
27.2% and 26.7%, respectively, and structural predicates are
last with only 2.7%.

The distribution of usage contexts by predicate categories (third
group) shows almost a similar distribution in each predicate cate-
gory. Dispatch usages are the most prevalent ranging from 64.5%
in nominal predicates to 91.1% in nil predicates. Assertion us-
ages come second in nominal (26%), polymorphic (15.1%) and nil
(7.7%) predicates; the only exception is structural predicates, where
assertion usages appear last with 2.9%. Collection usages rank last

Kinds Usages % Usages % LOC % Methods % Classes % Projects % Logical
Nominal 14,518 15.6 0.3 1.4 8.4 64.5 19.8
Structural 1,397 1.5 0.03 0.2 1.5 26.5 11.7
Polymorphic 6,446 6.9 0.15 0.7 4.5 41.4 28.5
Nil 70,875 76.0 1.6 8.0 32.2 95.0 11.2
All 93,236 100.0 2.1 9.7 36.9 96.3 13.8

Table 2. Usages distributions for coarse and fine-grained predicate categories.

Kinds Dispatch (D) Assertion (A) Collections (C) % (D) % (A) % (C) % (D) % (A) % (C)
Nominal 9,370 3,768 1,380 11.7% 36.9% 43.4% 64.5% 26% 9.5%
Structural 1,271 41 85 1.6% 0.4% 2.7% 91% 2.9% 6.1%
Polymorphic 4,624 972 850 5.8% 9.5% 26.7% 71.1% 15.1% 13.2%
Nil 64,572 5,439 864 80.9% 53.2% 27.2% 91.1% 7.7% 1.2%

Table 3. Usage contexts and predicate categories: The first group of three columns shows the number of usages by context and category. The
second group shows the distribution of usage contexts by predicate categories (columns sum 100%). The last group shows the distribution of
predicate categories by usage contexts (rows sum 100%).

in all categories but structural (6.1%). Particularly, nil predicates
are rarely used in a collection context (1.2%).

4.3 Nil predicate
Since nil-related predicates are so prevalent, we investigate them
further. In Table 2, we see that the Nil category consists of more
than three quarters of all predicate usages (76% or 70,875 usages).
If we look at the distribution of usages of nil predicates, we note
that 8% of all methods include a usage of a nil predicate (a density
per lines of code of 1.6%). Additionally, more than 90% of nil
usages are in a dispatch context (see Table 3), which makes it even
more easy to apply a non-null type technique.

Tony Hoare’s self-admitted “billion-dollar mistake”5 is hence
alive and well in Smalltalk code. On the upside, this is presents
opportunities for enhancement. One can clearly see how a type
system with non-null types would be beneficial in a slightly more
than three quarters (76%) of the cases we found in our corpus.

4.4 Polymorphic predicates
Almost 7% of all predicates are polymorphic predicates. These type
predicates are roughly half as prevalent as the nominal category.
Combining these usages with the usages of nominal type predi-
cates, nominal type predicates can be seen as polymorphic type
predicates waiting to be, we end up with 20,964 usages, or 22.5%
of all usages; a bit more than a fifth. This indicates a potential use-
fulness of a type system able to handle arbitrary type predicates. A
good example is Typed Racket [31] with occurrence typing.

Additionally, from Table 3, we can see that nominal and poly-
morphic predicates account for 70.1% of all usages in a collection
context. This strengthens the necessity of flow-sensitive typing to
support collection usages and not only direct control flow usages.

4.5 Summary
Another way to look at the results is “what is the best bang for the
buck” in terms of implementation effort. Here, we see that a type
system solely dedicated to handle nil-related predicates would have
a very broad applicability, as this category totals more than 70,000
type predicates usages, which accounts for 76% of all usages. The
results also tell us that a vast majority of nil checks (90.1%) occur
in a direct control flow statement. As for full-blown flow-sensitive
typing supporting polymorphic, nominal and structural predicates,
the results suggest that it is still worthwhile, in order to cover the

5 http://tinyurl.com/hoare-mistake

last quarter of all usages. Such a type system would also cover the
nil case.

5. Prevalence of logical combinations
To assess the practical value of logical types [32] in an object-
oriented context, we now study to what extent predicates are used
in complex expressions combined with logical combinators.

Logical combinators are the boolean operators, which in Smalltalk
includes and:, or: and a variety of sibling selectors (e.g. &, and:and:).
Predicates can be composed with others by using such logical com-
binators to produce more refined or detailed predicates. As such,
usage of logical combinations of type predicates cuts across predi-
cate categories. An example of using logical combinations of type
predicates is:

expr isMessage and: [expr receiver isVariable]
(prefix isKindOf: String) & (suffix isKindOf: String)

5.1 Overall prevalence of logical combinations
We found that a significant portion of all usages of type predicates
are included in such logical combinations. As the last column of
Table 2 shows, out of the 93,236 occurrences of type predicates we
found in the corpus, 13.8% are part of logical expressions. A sizable
minority of all type predicate usages is part of a more complex
logical predicate expression, suggesting that a flow-sensitive type
system should indeed account for such combinations. However
such type systems are usually complex to use, because of the
additional annotations and the extra effort required to understand
them. Finally, the proportion of logical type predicates varies with
the type predicate used.

5.2 Prevalence in nil predicates
In particular, nil predicates are much less present (11.2%) in com-
posed expressions than any other type predicate groups. More than
in other categories, it is very common to discriminate for the null
value only. Hence, the emphasis on non-null types would have an
important impact for a comparatively low effort: many type predi-
cates testing for the null value are executed in isolation and are not
embedded in a logical combinator (88.8%).

5.3 Nominal and polymorphic predicates
On the other hand, considerably more nominal and polymorphic
type predicates than nil predicates are to be included in conditional

http://tinyurl.com/hoare-mistake

expressions (with 19.8 and 28.5%). A possible reason for such a
higher proportion is that a simple conditional dispatch based on the
type of the object is more likely to be refactored to a polymorphic
method, since the infrastructure to host the polymorphic method—
the hierarchy of classes where it has to be implemented—is already
present. As a result, a higher proportion of complex logical type
predicates are present. Still, the fact that more than 70% of the
cases are simple conditionals means that polymorphism is not used
as much as it could be. Given that these categories of predicates
account for more than a fifth of all usages, the additional complex-
ity occasioned by the largest proportion of logical combinations
makes the task of implementing a type system handling arbitrary
type predicates more dependent on the additional inclusion of log-
ical types.

5.4 Structural predicates
Considering structural type predicates, we see that the proportion
of logical type predicates is lower, at 11.7%. One possible reason
for this is that programmers mostly use these predicates to check if
an object understands a specific message in order to immediately
send it, and usually not to perform more complex operations.

5.5 Summary
Logical combinations of type predicates are indeed prevalent in
object-oriented source code. However, they are more prevalent in
polymorphic and nominal predicates, than in nil type predicates.
This makes the decision whether or not to support logical types
somewhat dependent on the initial type system considered. Our
results concur with Tobin-Hochstadt and Felleisen [32] in that a
full-blown flow-sensitive type system should account for logical
combinations of predicates.

6. Prevalence of constant predicates
Object-oriented languages usually support mutable state. This
means that predicate methods may not be constant. As a conse-
quence, occurrence typing as originally formulated [31, 32] is un-
sound if predicates vary over time. Advanced approaches like flow
typing [11, 21, 34] and typestates [8, 27] can soundly account for
type predicates with mutable state but at the cost of increased com-
plexity. It is therefore important to evaluate how problematic this
issue is in practice.

6.1 Classification of predicates
In order to assess the prevalence of the issue related to mutable
state, we look at how polymorphic predicates are implemented.6

We first focus on the static analysis of all the predicate implemen-
tations of the corpus:

• We consider a predicate implementation to be statically con-
stant if its body returns a literal boolean (true or false).7 Eg:

Circle>>isCircle
↑ true

These predicates (1,524) are the polymorphic predicates that we
analyzed in the previous sections.

6 Strictly speaking, in a very dynamic language like Smalltalk, even a
nominal check with isKindOf: cannot be relied upon soundly, because the
class of an object can be changed dynamically. However, our previous study
of the use of such reflective features in Smalltalk shows that these cases are
marginal [5].
7 We considered the case of logical combinations of constant predicates;
however we found only one of these cases in the corpus.

0%

20%

40%

60%

Constant Mixed Variable

51.9%

14.3%

33.8%

Figure 3. Predicates distribution based on constancy.

• Otherwise it is considered to be potentially variable. For in-
stance, the following predicate implementation relies (indi-
rectly) on an instance variable (which is, in fact, mutable):
Eg:

File>>isOpen
↑ fileDescriptor notNil

These predicates (2,989) are polymorphic predicates that we
initially discarded because they have at least one state-based
implementation, as in the example above.

In the remaining of this analysis, we use the terms constant
and variable in the meaning described above. This classification
is a safe under-estimation of the number of constant predicate
implementations, as mentioned in Section 2.2.3. This means that
we may qualify certain implementations as variable even though
they are in fact constant. In Section 6.5 we report on a dynamic
analysis of a subset of predicates that refines the classification.

A given polymorphic predicate can be implemented in several
classes,8 sometimes in a constant manner, and sometimes not. Be-
cause we are interested in the constancy of predicates in general
(not of a given specific implementation), we perform the following
classification:

• A constant predicate is a predicate for which all implementa-
tions are constant.

• A variable predicate is a predicate for which all implementa-
tions are variable.

• A mixed predicated is a predicate for which some implemen-
tations are constant, and some are variable.

For the sake of occurrence typing, only reasoning on the use of
constant predicates is sound.

6.2 Prevalence of constant predicates
Figure 3 shows the distribution of predicates based on constancy.
Constant predicates account for a third (33.8%—1,524 predi-
cates). Variable predicates account for more than half of all pred-
icates (51.9%—2,342 predicates), and few predicates are mixed
(14.3%—647 predicates). On average, these mixed predicates are
implemented in 12.8 methods of which half are constant (52.8%),
i.e. returning a literal boolean, and half variable (47.%) implemen-
tations.

These numbers suggest that the soundness issue of occurrence
typing in presence of mutable state is a practical problem. Even
though the fact that a third of the predicates are constant is an under-
estimation, the results suggest that a good majority of the predicates
are possibly variable.

8 For 4,513 predicate names, we count 8,573 implementations, meaning that
a predicate is implemented 1.9 times on average.

0%

27%

53%

80%

Constant Mixed Variable

78.4%

9.1%12.4%

31.4%
18.3%

50.3%
Class-based
Others

Figure 4. Refined constancy distribution, depending on predicate
name.

6.3 Relevance of predicate names
We observed that predicates that are based on the name (or a part
of it) of an existing class in the system are significantly more likely
to be constant than the predicates that do not include a class name
in their selector name. Figure 4 shows that half of the class-based
type predicates are in fact constant, while this is the case for only
12.4% of the ones that are not class-based. As such, we can see that
the name of a predicate could be an indicator of the constancy of
its implementations.

6.4 Relationship between constancy and usage
Type predicates issues can be exacerbated if variable predicates are
used more than constant predicates. Because of this, we analyzed
whether there is a correlation between the level of constancy of
the predicates (defined by the ratio of constant vs. variable imple-
mentations) and their usages. A Pearson correlation between the
number of usages and the level of constancy was however found to
be both extremely low (0.05) and non-significant (p > 0.73), con-
firming the (somewhat expected) absence of a relationship between
the constancy of a predicate and its use.

6.5 Dynamic analysis of predicates
The static analysis results are broad in that they cover the whole
corpus, but are arguably overly conservative. The question that nat-
urally arises is: how many of these mixed and variable predicates
are effectively constant?

To answer this question, we use a runtime analyzer to under-
stand how predicates actually behave during execution. One pos-
sible way to measure predicate usages is to manually execute ap-
plications while analyzing how predicates behave at runtime. But
manually and meaningfully executing 1,000 projects is not prac-
tical. Therefore, we analyze the execution of unit tests associated
with each project. Using unit tests as scenarios for dynamic analy-
sis has been reported also in other tools [26, 29]. However, we are
aware that unit test scenarios may be biased, and consequently, our
dynamic analysis could be just a lower bound approximation.

From the 1,000 projects of the corpus, 562 offer a set of unit
tests that can be used to dynamically analyze predicates. Loading
and running these projects is a difficult task to automatize. Each
project is likely to depend on some other projects to form a runnable
system. We solve this problem by extracting the dependencies from
the source code, following previous work [14]. We then run the
unit tests. Of the 562 projects, only 164 are loadable and include
an executable test suite. The remaining 398 projects could either
not be properly loaded or executed. There are several reasons for
this: not all the dependencies can be satisfied; some projects are
unstable; or the version of the base system expected by each project
is not known and cannot be inferred easily.

We successfully analyzed the execution of 6,369 tests, in which
240 polymorphic predicate implementations were executed (from a
total of 1,422 implementations). These 240 predicate implementa-

Constant

Variable

0% 40% 80%

Statically constant
Constant
Constant per object
Variable

25.0% 29.5% 18.9%

26.5%

Figure 5. Refining constant and variable predicates with the dy-
namic analysis.

tions are grouped into 194 unique predicate names per project. We
filter out predicate names that do not have all their implementations
executed to meaningfully categorize the predicates. This leaves us
with 164 predicate implementations of 137 unique predicate names.
We found 5 predicates, discarded in the following analysis, that re-
turned non booleans during their execution (this confirms that our
false positive rate is low).

We classify each predicate into one of four categories:

• Statically constant predicates are, as in the static analysis, pred-
icates whose body returns a boolean literal.

• Constant predicates are predicates that were classified as poten-
tially variable, but that always return the same result across all
executions.

• Constant per object are predicates that always return the same
result for a given receiver object.

• Variable predicates return different results for the same receiver
object.

Figure 5 presents the results of analyzing the execution of the 132
predicates. While only 33 (25%) predicates are statically constant,
73.4% appear constant at runtime. More precisely, 39 (29.5%) are
constant regardless of the receiver, and 25 (18.9%) are constant per
receiver. The remaining 35 (26.5%) are in fact variable.

This means that barely more than a quarter of the predicates
in our sample are truly problematic9, and would make occurrence
typing unsound. This is because the object may mutate after the
predicate check invalidating the assumptions of occurrence typing.
For these cases, a more powerful typing approach that handles
mutability, such as typestates, would be required.

6.6 Summary
The static analysis shows that a large majority of predicates
(51.9%) is potentially variable, which would require complex typ-
ing techniques such as typestates to provide a benefit for program-
mers. Only a third of the predicates are statically constant. How-
ever, our dynamic analysis of a sample of the predicates reveals
that many of the potentially variable predicates actually behave
like constant predicates. Almost 3/4 of the predicates are found
to be constant for the lifetime of the objects, reducing the truly
variable cases to 26.5%. Of course, our dynamic analysis may be
incomplete, and our sample may not be representative. However,
the fact that we found a lower number of statically constant pred-
icates in our sample of dynamically analyzed projects makes us
think that this estimate borders on the conservative.

9 The dynamic analysis is based on unit tests that may not be representative
or may be biased. Hence, the total number of constant and variable predi-
cates may be just an approximation, see Section 7 for a wider discussion.

7. Threats to Validity
Construct Validity. For the main part of this study, we only use
static analysis as it is impractical to perform dynamic analysis
on all 1,000 projects due to reasons given in Section 6.5. We
therefore cannot be sure whether the declared usages of predicates
are actually exercised. Some identified usages may actually never
be used during the execution. However, we expect the percentage
of such “dead usages” to be low and to not significantly bias
the results, which is also confirmed by the dynamic analysis we
performed in 164 out of the 1,000 projects.

The algorithm to identify predicates might not completely cover
all predicates. In particular the list of language-defined predicates
we consider (isKindOf:, canUnderstand:, or isNil) might not be ex-
haustive. Similarly, considering only selectors following the pattern
isXxxx may ignore predicates following a different naming schema.

On the one hand, we thoroughly studied the Smalltalk language
to not miss any language-defined predicate in our list, and as such
are confident our predicate list is exhaustive.

On the other hand, we are also aware of other method pre-
fixes associated with predicates (i.e. canXxxx, shouldXxxx, hasXxxx,
doesXxxx). These prefixes are not always reliable markers of type
predicates, rather denoting state-based abstractions. The is prefix
carries a connotation of a type—an is-a relation— and hence gen-
erally tells us something about what the object is. Prefixes such as
has, can, should do not carry that connotation, having more to do
with properties or capabilities that the object has.

Thus, we chose to under-estimate the prevalence of type pred-
icates, instead of over-estimating it by including these additional
prefixes. We however investigated how much this choice impacts
our results. We found 1,535 defined method names matching the
prefixes above. However, only 117 (7.6%) return a literal boolean
in all of their implementations, totaling 1,129 usages of these pred-
icates, in all usage contexts (including the ones we discard). In con-
trast, the corpus contains thirteen times more selectors and almost
seven times more usages of polymorphic isXxxx predicates.

Carrying out the same analysis we performed for RQ4, we
found that only 7.6% of the implementations of potential predicates
with alternative prefixes were definitely constant (i.e. returning
a literal boolean—4.5 times less than their isXxxx counterparts),
while 84.75% were never literally returning a boolean (compared
with 51.9% of their isXxxx counterparts). The fact that there were 7
times fewer usages, and the fact that a large majority of them seem
to be state-based, makes us confident that our under-estimation is
small enough that it does not impact our overall findings.

The heuristic to filter out non-relevant polymorphic predicates is
just an approximation, because of limitations in the static analysis.
Although we do our best to determine if the receiver of a type
predicate is used later on, some cases are very hard to cover. For
instance, some usages may not include a literal block, but only
a variable to reference a block; this makes it impossible for our
analysis to determine if the receiver is used—however, there are
just 91 instances of this case in the corpus. Similarly, some relevant
usages may be wrongly classified, because the predicate receiver
may be used in a way in which the type information is not relevant,
e.g. calling the same method in both branches. We conjecture these
cases are negligible too.

Another threat is related to the natural language in which the
analyzed projects are developed. Our isXxxx heuristic is of course
only valid in English. However, the vast majority of the source code
in our corpus is indeed in English. We have anecdotal evidence
of projects in other natural languages, but they constitute a small
minority. Further, these projects still use type predicates defined in
the Smalltalk kernel, or in libraries or frameworks they use.

Internal Validity. In Section 3, we introduced usage categories of
predicates such as Dispatch, Collections, or Assertions. These cat-
egories are in practice not entirely orthogonal though. For instance,
a predicate used in Collections can also act as a Dispatch:

(figures anySatisfy: #isCircle) ifTrue: [self changeCircle]

In the case that a predicate usage is ambiguous, we add it to the
category with the highest priority, i.e. the one which is closest to
the actual usage of the predicate (in the case above, anySatisfy:
takes precedence over ifTrue:, so we classify it as Collection, not
Dispatch). This procedure might favor certain usage categories
over others and hence influence the results for the distribution of
predicate usages. However, we are interested in the closest usage
context that may impact the program’s control flow, which explains
our choice of priorities. Further, the number of cases where there is
an overlap is low; 7,573 of the 107,897 (7%) type predicate usages
were found to belong to two usage contexts.

For predicate usages not following one of the main categories
(i.e. Dispatch, Collections, Assertions, or Forward) we introduced
a catch-all category. This Others category might actually also con-
tain predicate usages of other categories. Since we do not closely
analyze the Others predicate usages in our study, we might ignore
relevant usages. However, as the Other category only contains 2%
of all usages, its impact on the study results is marginal. At worst,
we are slightly under-estimating the relevant predicate usages.

Our analysis suffers from name clashes: in a dynamically-typed
language like Smalltalk it is statically impossible to determine
whether two different definitions of a predicate isCircle in different
projects (or even in one single project) refer to the same concept or
whether they are unrelated. We currently search in the entire cor-
pus for predicate declarations and hence consider all definitions of
isCircle as one single concept and therefore all usages of this selec-
tor as users of one single predicate. Doing a project-based analysis
would have the opposite problem, finding that two usages of isCircle
in different projects would be referring to two distinct predicates,
even if they are genuinely related (e.g. one of the projects may ex-
tend the other, or use it as a library or framework).

The dynamic analysis we performed in Section 6.5 might be
incomplete and imprecise, as the results of any dynamic analysis
are highly dependent on the particular execution scenarios. For
this reason, we opted to execute the test suites of the analyzed
projects to maximize completeness and precision. These test suites
are likely to cover the important features of the analyzed systems,
so we expect the ratio of constant and variable predicates to not
vary much in other scenarios.

External Validity. As we only analyze open-source projects we
cannot generalize our results to close-source industrial projects.
Similarly, as we only take into account projects stored in Squeak-
source, contributed by Squeak and Pharo developers, we do not
know whether the results would be different when analyzing code
of other Smalltalk dialects such as VisualWorks.

Our corpus of analyzed projects only contains Smalltalk source
code. Our assumption is that Smalltalk code, since it is free from
typing constraints, is a “blank slate” in terms of how developers
do dispatch based on type predicates; a language with pre-existing
constraints might bias the results one way or another. However, car-
rying a replication of our study on another corpus (e.g. the Qualitas
corpus of Java source code [28]) would allow the community to
better understand the contrasts between languages and the biases
introduced by a particular type discipline.

To increase the representativeness of the study, we limited the
analysis to the 1,000 largest projects stored in Squeaksource. This
allows us to exclude toy or experimental projects from the analysis.
However, doing so might also impose a threat to external validity.

8. Related Work
Tobin-Hochstadt and Felleisen [31] report on their practical expe-
rience porting Racket programs to Typed Racket, but do not give
any empirical measurements about the prevalence of the patterns
their occurrence type system supports. When introducing logical
types [32] Tobin-Hochstadt and Felleisen report on a study focused
on the use of some known predicates (like number?) as well as on
the use of the or logical combination, which was not supported in
their previous system. They report that in the source code base of
Racket, or is used with 37 different primitive type predicates almost
500 times, as well as with user-defined predicates. These numbers
justify the logic reasoning framework they propose. Our experi-
ment further confirms that both occurrence typing and logical types
are useful, in the context of object-oriented languages.

When proposing flow typing, Guha et al. briefly report on the
prevalence of type tests and related checks across a corpus of
JavaScript, Python and Ruby code [11]. In 1.5 million lines of code,
they detect 13,500 occurrences of type testing operators. They
use this measurement as a motivation for their work. We detect
proportionally many more occurrences, even without considering
user-defined polymorphic predicates (about 3 times more). Our
study strengthens the argument that object-oriented programmers
tend to use explicit type checks sufficiently enough to warrant
specific support for them.

In the special case of non-null references, the study by Chalin
and James analyzed five open-source projects, and found that 3/4 of
declarations are meant to be non-null by intent [6]. Our study does
not directly measure this, but finds that even if this is the case in
our corpus, a significant number of the remaining type predicates
do concern nullity.

Winther presents Guarded Type Promotion [34], a type system
extension for Java that eliminates the need for explicit casts (called
guarded casts) through analyzing type predicates, i.e. instanceof
occurrences in control flow statements. Guarded Type Promotion
uses an intraprocedural data-flow analysis to detect (only) guarded
casts. Other kinds of casts, such as semi-guarded casts—i.e. casts
in control flow statements where a polymorphic type predicate,
such isShape, is checked—are not treated. Winther performed a
simple static analysis to track casts in several Java projects. In
total, 5.2 million LOC were analyzed, revealing more than 35,000
casts. A quarter (24.3%) of these casts are guarded casts, 23.1%
are classified as semi-guarded casts, and the rest are casts not
necessarily related to control flow. Additionally, Winther reports
that Guarded Type Promotion was able to remove almost 95% of
the guarded casts. These results suggest that a flow-sensitive typing
is very useful in Object-Oriented languages.

Whiley [21–23] is a statically-typed language that supports
flow-sensitive typing and structural subtyping. Whiley programs
compile directly to the JVM. Whiley’s type system is sound. In
the case of flow-sensitive typing, Whiley also supports union, in-
tersections and negation types. Union types are used to capture the
type of variables at meet points, intersection types are used for true
branches, and negation types are required for false branches. The
type system only tracks nominal type predicates.

Robbes et al. show that contrary to expectations, object-oriented
software does evolve in ways that do not fit the object-oriented
paradigm (by adding new classes), but rather corresponds to the
functional design (by adding new methods) [25]. This observation
could partially explain why object-oriented programmers resort to
explicit type checks, being the common approach of functional
design. Further study would be required to analyze a significant
sample of usages of type tests and see if they correspond to points
in the application design where functional decomposition is more
appropriate than the object-oriented one.

Malayeri and Aldrich perform an empirical study of the useful-
ness of structural subtyping in object-oriented languages [15]. They
analyze 29 Java programs and find that nominally typed programs
could benefit from structural types, leading to more opportunities
for code reuse, reduced number of runtime errors, and reduced
amount of code duplication. Our study shows that Smalltalk pro-
grammers do not use structural type predicates such as respondsTo:
as much as they use nominal ones. It has to be expected that using
structural predicates would exhibit similar advantages than those
reported by Malayeri and Aldrich, since they are, like polymorphic
predicates, more flexible by not depending on the actual implemen-
tation hierarchy.

Beckman et al. study object protocols in almost two million
lines of code of open-source Java programs, reporting that about
7% of the types in Java define protocols, and 13% of all classes are
clients of these protocol-defining classes [2]. Our study suggests
that a large number of predicates used in practice are used to
reason about the state of objects. Static reasoning on protocols
and object states is directly related and the techniques used, such
as typestate checking [3, 8, 27, 35], could be used likewise. It
would be interesting to study more precisely the state-dependent
predicates we identified in our experiment and see if they are related
to protocol-defining classes, as this would suggest a clear potential
for typestate-oriented programming [1, 35].

In a retrospective study of 10 open-source Java systems, Parnin
et al. studied the adoption of Java generics by Java developers [20];
they found that if developers do adopt generics (after a sometimes
consequent delay), it is principally because a minority of develop-
ers are championing the practice. Furthermore, developers do not
usually convert old code to generics. These results show that adop-
tion of a type system, or the extension of one, is far from automatic;
careful thought need to be invested in how to make the transition
as painless as possible. In addition, simple, pragmatic approaches
may pay surprisingly well: Parnin et al. found that the addition of
a simple StringList class, instead of a type extension, would have
covered 25% of all generic use cases.

9. Conclusion
Designing a type system for an existing dynamic object-oriented
language is a hard task. The choice of features to include in the
type system is delicate, in order to find a good compromise be-
tween coverage of existing programming idioms, strength of the
guarantees brought by the type system, as well as complexity and
usability of the type system. This work sheds light on the need to
support explicit type-based reasoning in object-oriented programs,
looking at a large Smalltalk codebase (more than 4 millions lines
of codes).

Despite being shunned by good practices, type predicates do
end up being present in object-oriented source code written by
practitioners. The prevalence of these predicates has practical con-
sequences in a variety of contexts. In this work, we discuss con-
sequences on two of them: to inform practitioners of the preva-
lent use of type predicate in practice; and on the design of type
systems that can efficiently propagate the information exposed by
those predicates. The results and findings in this paper can also con-
tribute to the discussion of type predicates in other areas, such as
those in refactoring and teaching. On the refactoring front, these
results may assist practitioners when they attempt to remove us-
ages of such predicates. On the pedagogical front, current peda-
gogical approaches would benefit from contrasting the core princi-
ple of the object-oriented paradigm with the state-of-the-practice,
raising awareness about the typical pitfalls and design alternatives.
However, we leave these analyses for future work.

We find that:
RQ1: Programmers do use a fair number of type predicates to

do explicit dispatch: overall, there is a density of one such check per
50 lines of code. The problem is prevalent in practice. There is need
for more awareness on this issue. Hence, flow-sensitive typing—in
any of its possible forms—is useful for objects.

RQ2: The Nil predicate accounts for three quarters of all us-
ages, and more than 90% of those usages are in a direct control
flow statement. This suggests that a simpler, less general approach
specifically tailored to this case would already enjoy a broad ap-
plicability. In other words, just the introduction of non-null types
would be a very valuable help to practitioners.

RQ3: Logical combinations of type predicates are prevalent
overall, though significantly more prevalent in polymorphic predi-
cates (28.5%) than in the Nil predicate (11.2%). This result can be
seen as a validation of the need for logical types in occurrence typ-
ing on the one hand, and as evidence that logical types are not as
necessary when only addressing the special predicates on the other
hand.

RQ4: A good proportion of type predicates are actually not
constant over time. Even though a (limited) dynamic analysis low-
ered this proportion considerably, the results still suggest that flow-
sensitive type systems should be able to deal with mutable state
properly.

We hope these results motivate researchers to conduct related
studies in other languages and scenarios in order to strengthen the
confidence in these conclusions.

We foresee at least two directions for future work. First, we plan
to extend the dynamic analysis to include more projects. For this,
we could enhance the current dynamic analyzer to support more
projects from the corpus. A more suitable alternative is to directly
apply the dynamic analysis to runnable Smalltalk projects whose
virtual images are available online. Second, we plan to apply the
static analysis of this paper to investigate the prevalence and us-
ages of state-based predicates. This would inform researchers and
practitioners about the relevance of complex state-tracking typing
techniques, like typestate.

Acknowledgments. We thank the DLS reviewers for their helpful
comments, and the European Smalltalk User Group (www.esug.org)
for the sponsoring.

References
[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented

programming. In Proceedings of Onward!, pages 1015–1022. ACM,
2009.

[2] N. E. Beckman, D. Kim, and J. Aldrich. An empirical study of object
protocols in the wild. In Mezini [17], pages 2–26.

[3] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In Proceedings of the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2007), pages 301–320, Montreal, Canada, Oct. 2007. ACM
Press. ACM SIGPLAN Notices, 42(10).

[4] J. Bloch. Effective Java, 2nd Edition. Addison-Wesley, 2008.

[5] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger. How (and why)
developers use the dynamic features of programming languages: the
case of Smalltalk. Empirical Software Engineering, 2012. Online
First.

[6] P. Chalin and P. R. James. Non-null references by default in java: Al-
leviating the nullity annotation burden. In ECOOP 2007: Proceedings
of the 21st European Conference on Object-Oriented Programming,
pages 227–247, 2007.

[7] W. R. Cook. On understanding data abstraction, revisited. ACM
SIGPLAN Notices, 44(10):557–572, 2009.

[8] R. DeLine and M. Fähndrich. Typestates for objects. In M. Oder-
sky, editor, Proceedings of the 18th European Conference on Object-
Oriented Programming (ECOOP 2004), number 3086 in Lecture
Notes in Computer Science, pages 465–490, Oslo, Norway, June 2004.
Springer-Verlag.

[9] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null
types in an object-oriented language. In R. Crocker and G. L. Steele,
Jr., editors, Proceedings of the 18th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2003), pages 302–312, Anaheim, CA, USA, Oct. 2003.
ACM Press. ACM SIGPLAN Notices, 38(11).

[10] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[11] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and
state using flow analysis. In G. Barthe, editor, Proceedings of the 20th
European Symposium on Programming (ESOP 2011), volume 6602 of
Lecture Notes in Computer Science, pages 256–275. Springer-Verlag,
2011.

[12] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthesizing
object-oriented and functional design to promote re-use. In Proceed-
ings of the 12th European Conference on Object-Oriented Program-
ming, ECOOP ’98, pages 91–113, London, UK, UK, 1998. Springer-
Verlag. ISBN 3-540-64737-6.

[13] G. Laforge. Whats new in Groovy 2.0?
http://www.infoq.com/articles/new-groovy-20, 2012.

[14] M. Lungu, R. Robbes, and M. Lanza. Recovering inter-project de-
pendencies in software ecosystems. In ASE’10: Proceedings of the
25th IEEE/ACM international conference on Automated Software En-
gineering, ASE ’10, pages 309–312, 2010.

[15] D. Malayeri and J. Aldrich. Is structural subtyping useful? an empir-
ical study. In G. Castagna, editor, Proceedings of the 18th European
Symposium on Programming (ESOP 2009), volume 5502 of Lecture
Notes in Computer Science, pages 95–111. Springer-Verlag, 2009.

[16] S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs
and Designs (3rd Edition). Addison-Wesley, 2005.

[17] M. Mezini, editor. Proceedings of the 25th European Conference on
Object-Oriented Programming (ECOOP 2011), volume 6813 of Lec-
ture Notes in Computer Science, Lancaster, UK, July 2011. Springer-
Verlag.

[18] O. Nierstrasz, S. Ducasse, and S. Demeyer. Object-Oriented Reengi-
neering Patterns. Square Bracket Associates, 2009.

[19] B. C. Oliveira. Modular visitor components. In Proceedings of
the 23rd European Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, pages 269–293, Berlin, Heidelberg, 2009.
Springer-Verlag. ISBN 978-3-642-03012-3.

[20] C. Parnin, C. Bird, and E. R. Murphy-Hill. Java generics adoption:
how new features are introduced, championed, or ignored. In MSR
2011: Proceedings of the 8th International Working Conference on
Mining Software Repositories, pages 3–12, 2011.

[21] D. Pearce. Sound and complete flow typing with unions, intersections
and negations. In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors,
Verification, Model Checking, and Abstract Interpretation, volume
7737 of Lecture Notes in Computer Science, pages 335–354. Springer
Berlin Heidelberg, 2013.

[22] D. J. Pearce. A calculus for constraint-based flow typing. In Proceed-
ings of the 15th Workshop on Formal Techniques for Java-like Pro-
grams, FTfJP ’13, pages 7:1–7:7, 2013. ISBN 978-1-4503-2042-9.

[23] D. J. Pearce and J. Noble. Implementing a language with flow-
sensitive and structural typing on the JVM. Electronic Notes in The-
oretical Computer Science, 279(1):47 – 59, 2011. ISSN 1571-0661.
Proceedings of the Bytecode 2011 workshop, the Sixth Workshop on
Bytecode Semantics, Verification, Analysis and Transformation.

[24] D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in em-
pirical software engineering. In Proceedings of the 26th ACM/IEEE
International Conference on Automated Software Engineering (ASE
2011), pages 362–371, 2011.

[25] R. Robbes, D. Röthlisberger, and É. Tanter. Extensions during soft-
ware evolution: Do objects meet their promise? In J. Noble, editor,
Proceedings of the 26th European Conference on Object-oriented Pro-
gramming (ECOOP 2012), Lecture Notes in Computer Science, pages
28–52, Beijing, China, June 2012. Springer-Verlag.

[26] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk.
Theor. Pract. Object Syst., 3(4):253–263, Oct. 1997. ISSN 1074-3227.

[27] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on
Software Engineering, 12(1):157–171, 1986.

[28] E. D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. The qualitas corpus: A curated collection of
java code for empirical studies. In APSEC 2010: Proceedings of the
17th Asia Pacific Software Engineering Conference, pages 336–345,
2010.

[29] A. Thies and E. Bodden. Refaflex: Safer refactorings for reflective java
programs. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages 1–11, 2012. ISBN
978-1-4503-1454-1.

[30] S. Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. PhD
thesis, Northeastern University, Jan. 2010.

[31] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2008),
pages 395–406, San Francisco, CA, USA, Jan. 2008. ACM Press.

[32] S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped
languages. In Proceedings of the 15th ACM SIGPLAN Conference
on Functional Programming (ICFP 2010), pages 117–128, Baltimore,
Maryland, USA, Sept. 2010. ACM Press.

[33] M. Torgersen. The expression problem revisited four new solutions
using generics. In In Proceedings of the 18th European Conference
on Object-Oriented Programming, pages 123–143. Springer-Verlag,
2004.

[34] J. Winther. Guarded type promotion: Eliminating redundant casts in
Java. In Proceedings of the 13th Workshop on Formal Techniques for
Java-Like Programs, FTfJP ’11, pages 6:1–6:8, 2011. ISBN 978-1-
4503-0893-9.

[35] R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate. In
Mezini [17], pages 459–483.

[36] M. Zenger and M. Odersky. Independently extensible solutions to the
expression problem. In In Proc. FOOL 12, 2005.

	Introduction
	Experimental Setup
	Corpus
	Finding Predicates and Their Usages
	Nominal
	Structural
	Polymorphic
	Nil predicate

	Prevalence of type predicates
	Basic statistics in Squeaksource
	Usage categories
	Refinement
	Prevalence of predicate usages
	Summary

	Prevalence of categories of type predicates
	Predicate categories
	Usages context and predicate categories.
	Nil predicate
	Polymorphic predicates
	Summary

	Prevalence of logical combinations
	Overall prevalence of logical combinations
	Prevalence in nil predicates
	Nominal and polymorphic predicates
	Structural predicates
	Summary

	Prevalence of constant predicates
	Classification of predicates
	Prevalence of constant predicates
	Relevance of predicate names
	Relationship between constancy and usage
	Dynamic analysis of predicates
	Summary

	Threats to Validity
	Related Work
	Conclusion

