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Abstract—Empirically analyzing debugging activity is notori-
ously difficult. In particular, aggregating data (obtained from
either observation or event logging) to verify hypotheses on
developers’ behavior is known to be challenging. Overall, the
difficulty of studying debugging activities contributes to the need
for more empirical evidence on how practitioners use debuggers.

We propose debugging activity blueprint as a visual tool
to analyze and navigate through all the events recorded in
a programming environment. Our blueprint is a polymetric
view representing the interaction between debuggers and other
programming tools. Our blueprint highlights the flow of a
debugging activity across the tools an IDE offers. An exploratory
use case over three participants and two debugging tasks indicates
that our blueprint supports a fine-grained analysis of complex
debugging scenarios.

Index Terms—Debugging, Debugging behavior, IDE, visualiza-
tion, polymetric views

I. INTRODUCTION

Debugging is a crucial activity in software development that
involves identifying, analyzing, and removing bugs from a
software system. Despite its relevance, in today’s programming
and software development environments, we still need to
understand how practitioners use debuggers at a fine and
coarse-grain level. Not being able to characterize the behavior
of programmers when debugging may hamper the future
development of debugging tools and methodologies.

For example, a debugging activity does not solely happen
in a debugger. Previous research efforts [1], [2] show that
practitioners navigate through the base source code of an
application being debugged. However, we still need to un-
derstand the developer intent behind this phenomenon. Just as
we need to provide answers to essential questions such as What
programming tools does a practitioner need when debugging?
or What information is important to a practitioner that is not
provided by a debugger? and correlate them with developers’
intent.

Considered problem. The problem addressed in this paper
is how to characterize a debugging activity? As far as
we are aware of, no tools or methodologies proposed by the
academic community allow to fully to grasp the intent behind

developers’ debugging actions. Our blueprint is a first step
toward answering this question.
Contribution. This paper proposes debugging activity blueprint,
a multi-scale polymetric view [3] to visualize a debugging
activity conducted by a programmer. Our blueprint is built from
a seamless event logging of the programming environment and
provides visual support to analyze the behavior of the monitored
debugging activity. Our blueprint is multi-scale because it helps
observe behavior at a very fine grain (e.g., representing a
sequence of debugging actions like step into and step
over) and at a coarse grain (e.g., moving from one tool
to another). Our blueprint is postmortem, meaning that our
visualization is built once the debugging activity is deemed
completed.
Evaluation. We have applied our blueprint to two different
debugging tasks performed by three participants. We were able
to fully understand and explain a complete session. We have
identified a visual vocabulary from recurrent visual structures
and new questions raised about debugging activities.
Outline. The paper is structured as follows: Section II provides
the necessary background to our work. Section III describes
our debugging activity blueprint. Section IV presents the
case studies and the results we obtained by applying our
blueprint. Section V presents the visual vocabulary our blueprint
defines and uses this vocabulary in the case studies presented
earlier. Section VI discusses relevant points of our approach.
Section VII summarizes the threats to validity we identified.
Section VIII discusses the work related to our effort. Section IX
concludes and highlights our future work.

II. BACKGROUND: PHARO PROGRAMMING TOOLS

We applied our blueprint to debugging sessions monitored in
the Pharo programming environment [4]. As such, it is relevant
to give an overview of the programming tools commonly used
with a debugger since our blueprint visualizes the interaction
between these tools.
Inspector. An object in object-oriented programming consists
of values following the structure specified by the class of the
object. An inspector is a tool that shows the values of an



object’s variables, commonly referred as the dynamic state
of that object. An object inspector allows a practitioner to
navigate through the graphs of objects.
Code browser. In Pharo, the code browser is the main tool to
view and edit source code. One can execute code snippets or
unit tests from a code browser. A code browser also displays
the breakpoints associated with a line of code.
Debugger. This is the main tool used by Pharo developers to
explore and navigate the execution state of a program. The
Pharo debugger is similar to traditional debuggers structured
along a method call stack. It shows the current frame with the
run-time values of its defined variables, and the source code
associated to that current frame. In addition, Pharo’s debugger
supports live methods edition, i.e., methods can be modified
without requiring the running program to be restarted.
Queries. One can query the Pharo system to answer questions
about the source code structure. Querying a simple method
printOn: signature lists (i) the implementations of the
method printOn: found in the system or (ii) existing
methods that call printOn:.
Commonality between Pharo tools. Programming tools pro-
vided by Pharo have a number of commonalities. First, one
can have multiple instances of each tool. It is common in a
debugging activity to have several debuggers opened at the
same time. Pharo does not impose any restriction on the number
of instances of code browsers, inspectors, queries, or debuggers
one can use at the same time.

Second, all the tools can be opened and used at any given
time. For example, it is common for a practitioner to navigate
or edit code using a code browser and debug a given code
snippet (which has the effect of executing the snippet within a
debugger).

Third, no programming tool dominates other tools, and all
the tools are equally accessible through a keyboard shortcut
and contextual menu.
Differences with VSCode and Eclipse. Properties of the Pharo
tools contrast with tools offered by major programming environ-
ments, including VSCode and Eclipse. In these environments,
the source code dominates other tools since they are almost
always present as window tabs. One cannot open more than
one debugger at a given time. The enforced code editing phase
vs execution phase implies that one cannot arbitrarily open
a debugger during code editing. Pharo does not enforce tool
dominance or restrict code editing to a separate activity from
program execution.

III. DEBUGGING ACTIVITY BLUEPRINT

The debugging activity blueprint is a visualization that shows
the tools used by a developer during a debugging task. Our
blueprint displays the relationships between the tools and the
activities performed within these tools.

A. In a nutshell

The debugging activity blueprint is a post-mortem visualiza-
tion representing a debugging activity exercised by developers

in the Pharo development environment (or Pharo IDE). We
refer to debugging activity as a portion of a programming
session in which a developer mostly concentrates on fixing or
understanding software behavior.

When debugging, every action performed by developers
in the Pharo IDE is recorded as a log. Once the debugging
session is deemed finished by the programmer, our visualization
uses these logs to represent the activities of developers in
the debugging tools from the IDE. Tool activities and their
interactions are represented in a structured fashion, as illustrated
by Figure 1.

Query

Inspector
Application

Code
browser

Debugger

Activities

Fig. 1: Debugging activity blueprint: tool activities and inter-
actions.

Representing Pharo tools. Our blueprint represents a Pharo tool
as a colored box. Figure 1 shows the different kinds of Pharo
tools available displayed by the blueprint with their interactions.
The color of the boxes indicates the kind of tool involved
in the activity. The blueprint uses the following arbitrary
color encoding: Debugger , Inspector , Query , Browser ,
Application (which corresponds to the application being

debugged).
Flow between tools. An arrow T → S between two boxes T
and S indicates at least once transition that occurred between
the tool T to the tool S. This transition means that the developer
used T during the debugging activity, and then switched to the
tool S. This transition may happen several times during the
debugging activity.

Note that our tool does not represent the liveness of the
Pharo tools. A transition T → S does not indicate that T was
removed from the IDE or S was opened. Instead, it simply
means that the user changed their focus to another tool. Tool
opening or closing is not represented in the blueprint.

Since each of the inspectors and the query forms a cycle
with the debugger, we deduce that the programmer temporarily
moved away from the debugger.
Interaction block. Within a given tool, developers typically
perform several actions before switching to a different tool.
We refer to interaction block as an uninterrupted sequence of
actions performed in the same tool. A sequence of actions
interrupted by switching programming tools results in two
interaction blocks. An interaction block is represented as a



smaller gray box located in a box. The size of an interaction
block reflects the number of actions performed by developers.
Many actions can be performed in the debugger, including
inspecting variables’ values, navigating in the method call stack,
adding new breakpoints, and stepping to the next instruction.

Figure 1 shows that all tools have one or several interaction
blocks. Interaction blocks within a tool are read from left to
right and top to bottom, as in most Indo-European natural
languages. Figure 1 reveals that the programmer performed
many actions in the debuggers since the debugger contains 14
blocks, which means that the programmers move away from
and back to the debugger 13 times. Some debugger’s blocks
are large, indicating the programmer did many actions without
leaving the debugger (e.g., step into or step over). The
query and inspectors have a small block each, indicating that
the programmer did not do much with these tools.

B. Interactions

An interaction block is a linear sequence of actions. If at least
one debugging action related to the control flow or program
counter (i.e., step-over, step-into, add a breakpoint, etc.) is
among an interaction block’s actions, then the interaction block
has a thin black border (i.e., ).

When moving the mouse over a user interaction, such as in
Figure 2, a tooltip appears showing the duration of the activity
and the debugging actions performed during this interaction.
We encode debugging actions into symbols to indicate the
actions performed during an interaction block. Table I shows
the Pharo debugging actions with their associated symbols.

TABLE I: Symbols for Debugging Actions and breakpoints.

Action Symbol Breakpoints Symbol

Over > Add +b

Into V Hit *b

Proceed P Remove -b

Fig. 2: Interactions.

The In symbol (see Figure 2) corresponds to inspections
of code, execution contexts, objects, etc. We do not consider
inspections as debugging actions but as exploration actions.
Within the same tool, developers may execute different explo-
ration actions in different subtools. It is therefore common to
have successive basic interactions without leaving the tool. A
classical example is the inspection of an object: developers may
dive into the object’s graph from its instance variables, which
may open sub-inspections or trees of properties. This kind

of tool’s inner interactions spawns different basic interactions
within a tool visualization.

Temporality is not explicitly represented in the blueprint.
Instead, interactions offered by the blueprint are key to revealing
the different order of sequentiality of events. We visualize
temporality using color highlighting. When pointing the mouse
over an interaction, the visualization highlights the previous
interaction in orange and the next interaction in red. We can
see an example in Figure 3. The mouse is moved over the fifth
square of the debugger (in pink). The developer was previously
in the orange interaction in the same debugger, before arriving
at the current interaction. A tooltip appears over the current
interaction and shows the sequence of actions performed by the
developer. The developer inspected (In) three elements of the
debugger, then added a breakpoint (+b), inspected two elements
(In), resumed the execution (P) which hit a breakpoint (*b).
Just after the breakpoint hit, the developer moved to the red
interaction in the code browser at the left of the debugger. We
then interpret that the cause of moving to the code browser
was the breakpoint hit.

Fig. 3: Temporality.

C. Exploration and annotation of blueprints

To enhance and archive the blueprint understanding, we
complement the visualization with fine-grained logs and
annotations associated with tools and their interactions.
Access to the logging model. When generating a blueprint from
logs, we maintain a mapping between the visual element (e.g.,
an interaction) and the logs from which it was materialized.
Combined with the visual elements, these logs enable fine-
grained comprehension of the actions performed by developers.

For example, in Figure 3 we know from the blueprint that the
developer installed a breakpoint. When we select the +b symbol
in the tooltip, an inspector opens on the log from which that
visual element was materialized. In Figure 4, we can observe
an excerpt of the inspected breakpoint installed in Figure 3. We
then obtain the knowledge that the developer put a breakpoint
on the method personName of a class OCDPerson, and
more specifically on the line that returns the person’s name
(the node element in Figure 4).

Fig. 4: Excerpt of a breakpoint log example.



Annotations. To save the knowledge acquired when exploring
a blueprint, each tool (i.e., color boxes) and each interaction
block (i.e., inner grey boxes) can be annotated with texts that
persist in the blueprint model. To do so, we need to select a
tool or a tool interaction and add an annotation in the pane
that opens (Figure 5).

Fig. 5: An interaction (in red) with an annotation.

IV. EXPERIMENTAL DESIGN AND RESULTS

We performed an exploratory experiment with three par-
ticipants to study how the debugging activity blueprint can
help in understanding how developers debug. We simulate a
between-participant experiment for the experimentation of a
debugger extension (namely, an object-centric debugger [5]) by
giving developers real debugging tasks, one for which they do
not use the debugger extension and the others for which they
use it. The goal of the experiment is not to study the impact of
the object-centric debugger but to explore the visualization’s
potential for understanding debugging activities and especially
the impact a debugger may have.

Study settings. We asked three participants of different profiles
and experiences (see Table II) to perform a set of debugging
tasks in Pharo. The tasks are composed of one control task and
one treatment task. In both tasks, we ask participants to solve
a bug. During the control task, participants use the standard
debugging tools available in Pharo. During the treatment task,
participants use an object-centric debugger [5].

We configured the environment to import the debugging
tasks and record participants’ actions required to generate the
visualization. Participants never leave the Pharo IDE as the
experimental framework with the task descriptions is included
in Pharo. Participants record their screens but do not follow
any protocol to comment on what they are doing, e.g., they
do not think aloud.

Participants. Table II details the participant’s profiles. Partici-
pants are one associate professor with a 10-year-long industry
experience in software development (SD), one computer science
PhD student with 4 years of SD experience, and one engineering
intern with 4 years of SD experience. All participants were
either familiar with or already heard of the additional tool used
in the treatment task. All participants are proficient with Pharo
tools and are Pharo practitioners, in particular, they are used
to debug with Pharo. In the following, participants are referred
to as users.

TABLE II: Participants: three Pharo practitioners.

Alias Soft. dev. experience Position

User-A 4 years Engineering intern
User-I 4 years PhD student
User-V > 10 years Associate professor

Debugging tools. Participants used two kinds of tools during
the experiment. During control tasks, they use the standard tools
available in Pharo and described in Section II. During treatment
tasks, participants use the standard tools complemented by an
object-centric debugger. This debugger provides breakpoints
that automatically scope to specific objects without the need
to write conditionals.

Tasks. The tasks assigned to participants are named Atom and
Reflectivity. The Atom task consists in solving a bug
in a small graphical application composed of colored squares
named atoms. The Reflectivity task consists in fixing a
unit test of Reflectivity [6], the reflective layer of Pharo. For
each task, participants have to provide a fix and an explanation
for the bug.

Tasks are randomly assigned to users in one of the two
sequences detailed in Table III. The first tasks (1) are always
used as control, while the other task (2) are always using the
treatment (i.e., the object-centric debugger).

TABLE III: Tasks sequences.

Sequence Task 1 Task 2

1 Atom Reflectivity

2 Reflectivity Atom

Results. Table IV shows for each task the time taken by
participants to complete the task and if participants fixed the
task’s bug. All participants fixed the two bugs. On the measured
times we can observe the following:

• User-A (novice) spent as much time solving the control
task (Atom) and the treatment task (Reflectivity).

• User-I (novice) spent about twice the time on the control
task (Atom) compared to the treatment task (Reflectivity).

• User-I (novice) spent about the same time solving the
Reflectivity task as treatment as User-V (expert) did for
the same task as control.

• User-V (expert) spent about more time solving the
treatment task (Atom) than the control task (Reflectivity).

These observations, if repeated with many participants, might
provide statistical evidence that the treatment tool has or has
not an effect on the debugging efficiency of the participants.
However, such quantitative evaluation cannot help us to
understand the mechanisms at play in the observed effects.
In the next section, we use the Debugging Activity Blueprint
to study the participants’ debugging behavior during these
tasks.

z



TABLE IV: Results of the experiment for each task, by user.
Data is computed from the logs. The times are displayed in
minutes with seconds (i.e., 1’15 = one minute and fifteen
seconds). (C) = control task, (T) = treatment task.

Alias Tasks (in order) Time (in min) Bug fixed

User-A (C) Atom 36’49 yes
(T) Reflectivity 37’08 yes

User-I (C) Atom 43’58 yes
(T) Reflectivity 20’47 yes

User-V (C) Reflectivity 20’54 yes
(T) Atom 33’41 yes

V. VISUALIZING DEBUGGING ACTIVITIES

In this section, we study the blueprints of the debugging
activities extracted from the participations to our experiment.
Figures 6, 7 and 8 respectively show the debugging activity
blueprints of participants User-A, User-I, and User-V for
their control and treatment tasks. These figures have been
manually annotated. We report notable observable instances
of similar tool interactions that we categorize into a visual
vocabulary. We use this vocabulary to do a summary analysis
of each participant’s debugging session. We discover that our
vocabulary could become patterns of debugging that could be
used for systematic analyses of debugging activity blueprints.
Finally, we analyze in detail a specific blueprint and observe
that our understanding of the debugging session from the
blueprint matches what happens in the corresponding video.

A. Visual Vocabulary

In this section, we define the debugging activity blueprint
vocabulary from what we observe in the visualizations from
Figures 6, 7 and 8. We observe three kinds of recurring notable
instances of tool interactions and navigation: chains, hubs, and
ping-pongs.
Chain. A chain is a single sequential flow going through three
or more tools of any kind (including start and stop). The flow is
unidirectional, starts from any kind of tool, and may return or
not to its starting point. For example, a long chain of debuggers,
manually annotated C2, can be seen on the right side part of
Figure 7.
Hub. A hub is a window with a notable concentration of
activities, from which other tools are navigated back and forth.
Visually, a hub appears central to the debugging activity and
catches the eye. The window is bigger and contains more
activities than most of the other navigated tools. For example,
two hubs can be seen in the left side task of Figure 8: a
debugger (pink) and a code browser (green) marked with h1
and h2.
Ping-pong. A ping-pong is a central window of one kind (e.g.,
a debugger) from which two or more tools (e.g., inspectors) are
navigated back and forth. The navigated tools have a unique
activity, with a unique incoming and outgoing flow from and
to the central windows. Figure 8, in the Atom Task, shows a
ping-pong example with a debugger as the central window and

several other tools (six inspectors, one code browser, and one
debugger). A ping-pong is marked with p1 in the figure.

B. Visualizations exploration

In this section, we use our vocabulary to explore the
visualizations. First, we describe the occurrences of the
observable vocabulary instances. Second, we interact with the
live visualization to explore the meaning of these instances in
the context of each debugging task.

1) Instances of vocabulary: We counted the number of
occurrences of each vocabulary instance and reported the
numbers in Table V. To count, we went over each visualization
and looked for all possible instances of one or more of our
vocabulary definitions. To simplify a possible check by the
readers, Figures 6, 7 and 8 representing, both the control and the
treatment tasks, have been manually annotated after analysis.

TABLE V: Instance count of each vocabulary element by user,
for their control (C) task visualization and their treatment (T)
task visualizations.

User Chain Hub Ping-Pong

A (Fig. 6)
C 9
T 4

C 4
T 3

C 2
T 2

I (Fig. 7)
C 8
T 4

C 5
T 0

C 0
T 0

V (Fig. 8)
C 10
T 3

C 2
T 1

C 2
T 1

First observations lead to the conclusion that these patterns
are independent of the task, the user, and the type of used
debugger. Indeed, vocabulary instances are observed multiple
times for each user, and in each task except the treatment
task of User-I for which we observe no hubs and no ping-
pongs. We therefore hypothesize that our vocabulary may
actually represent patterns, i.e., “recurring solutions to standard
problems.” [7].

The visualizations in the scope of the current work are
insufficient to conclude about such patterns. Broader exper-
iments should be conducted to empirically explore these
pattern meanings. However, before this experiment, it was very
difficult for us to explain or decompose a debugging session.
The debugging activity blueprint allowed us to observe these
possible patterns and formulate a hypothesis about them. More
targeted use cases or case studies using the blueprint could
help researchers observe oddities, leading to new patterns, in
the ways developers use their debuggers and interact with
their IDE when debugging. From such observations, we can
then formulate new hypotheses to explore in real empirical
evaluations and learn more about debugging sessions.

2) Summary analysis of the debugging sessions: Considering
User-A (Figure 6), the debugging activity blueprint enables us
to observe that the debugging sessions for the control and the
treatment tasks seem to share some properties: no apparent
structure is obvious, and there are multiple instances of many
tools. These sessions are long and complex in terms of tool
interaction.
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Fig. 6: User-A (novice): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.



Considering User-I (Figure 7), the debugging activity
blueprint enables us to observe that the control and the
treatment tasks seem significantly different. The debugging
session of the treatment task is simpler, relatively sequential,
and without any hub or ping-pong. On the opposite, the control
task looks like the debugging sessions of User-A.

Considering User-V (Figure 8), the debugging activity
blueprint shows that the debugging session for the control task
looks like those of the two other participants even if User-V is
an expert. This visualization has hubs, ping-pongs, and chains.
His control task is nevertheless simpler implying that experience
has an impact. In addition as for User-I, the debugging session
for User-V’s treatment task is simpler compared to both his
control task and the ones of the two other participants.

We do not consider these three participants as representative.
Still, the debugging activity blueprint encourages us to think
that (i) with traditional debuggers, whatever the experience of
the user, the debugging sessions reflects the complexity of the
task, (ii) using an object-centric debugger may reduce the time
and number of actions needed to debug; (iii) the object-centric
can differently simplify a debugging session and (iv) some
patterns appear in the debugging sessions whatever the used
debugger, object-centric or not.

Further investigations are needed, for example, to understand
the impact of using the object-centric debugger. We have three
participants, for one, using such a debugger seems to have no
incidence, for the two others it seems it has, by simplifying,
but the blueprints are different. We were completely in the
dark without the debugging activity blueprint. Now, we have a
tool to analyze better and understand debugging sessions. New
questions arise such as: (i) are the debugging sessions with
traditional tools always so complex and not fluid? (ii) does
using an object-centric debugger or more generally, a specific
debugger simplify and fluidize a debugging session? (iii) does
the nature of the task influence the debugging session? (iv) does
the expertise of a participant on a project influence a debugging
session more than using a specific debugging tool? and so on.
With the debugging activity blueprint, new perspectives are
opened to understand debugging sessions.

3) Focus: fine-grained analysis of a debugging session:
In the following, we detail the debugging session of User-I
on their treatment task (Figure 7). We chose this particular
visualization because it is radically different from all others.
This visualization corresponds to a session where User-I, a
novice developer, uses an additional tool named object-centric
debugger. User-I finished the task (i.e., correctly fixed the bug)
in about 21 minutes. User-V (expert, Figure 8) finishes the
same task also in 21 minutes but without the additional tool
(i.e., in control). User-I’s treatment visualization is simple, has
no hubs, no ping-pongs, but only chains, and the time to finish
the task matches the expert’s performance. This is not the case
for the novice User-A (Figure 6) on the same task as treatment.

Methodology. We used the live visualization side-by-side with
the video recording of User-I’s treatment task. We used the
interactive flow of the visualization to track User-I’s navigation

through different activities, the interaction popups to observe
the performed actions (e.g., debugger steps), and the detailed
actions in the logs associated with each activity to understand
the semantics of the performed actions. When we had doubts
about interpreting the visualization, we looked at the video
recording and investigated both side-by-side. Throughout this
analysis, we manually annotated the visualization (see Figure 7
in treatment) with numbers representing the important steps of
the debugging session and we described our understanding
of these steps in the blueprint using its annotation tool.
Finally, after finishing the analysis we watched the entire video
recording with our notes and the visualization and compared.

Fine-grained analysis results. The participant started the task
and reached the task application window, where the task was
described. This analysis is consistent with the screen recording
of User-I. Steps listed below are indicated in the blueprint
(Figure 7, right side).

1) The user spent under a minute reading before moving
on to the class mentioned in the task description and
accessing the code browser.

2) The user executed the unit test pointed out by the task
description, which failed and opened a debugger.

3) In the opened debugger, the user inspected the failure
context and the objects within, in multiple activities in
the same debugger window. They performed no actions
other than inspecting the execution state for about a
minute. They then left the debugger and went back to
the central code browser.

4) a) The user put a breakpoint at the beginning of the
unit test and started debugging the test.

b) The user stepped a few times to dive into the code
execution and carefully inspected objects in their
context within the debugger. Then, the user opened
a specific inspector window on one of these objects.

5) a) The user performed two inspection activities within
the same inspector window. They navigated two
different panes, one showing an object and its
properties and the other showing the details of the
selected properties. They navigated and inspected
the properties of the object inspected from 4. They
opened a new inspector window on one of these
objects.

b) The user briefly inspected the newly opened object,
then left the inspector to get back to the debugger.

6) a) Based on their previous observation, the user
selected a set object in the debugger on which they
placed two object-centric breakpoints on methods
used to add elements to sets (Set>>#add:
and Set>>#addIfNotPresent-
:ifPresentDo:). They proceeded with
the execution, which hit a first breakpoint in the
same control flow (i.e., in the same debugger).

b) The user performed inspection activities until pro-
ceeding with the execution again, which hit the
breakpoint again.
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Fig. 7: User-I (novice): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

c) The user proceeded through a chain of four object-
centric breakpoint hits (chain 2), which ended up
in the last debugger of the chain.

d) Arrived in this debugger from four object-centric
breakpoint hits, the user removed their breakpoints
and performed careful inspections of the execution
context and its objects within the same debugger.
They finally closed the debugger and went back to
the central code browser.

7) a) In the central code browser, the user debugged the
test again and restarted the process.

b) In the debugger, the user precisely stepped and
looked for a particular object (a set) on which they
put again an object-centric breakpoint. However,
this time they only put it on the add: message.
They proceeded and the breakpoint hit, opening

a new debugger. This breakpoint was reached in
under a minute.

c) For 2 minutes, the user inspected the breakpoint
context in two debugger activities. They did not
seem to find what they were looking for and ended
up proceeding and hitting the breakpoint again.

d) The user inspected the newly opened debugger and
spent about 2 minutes inside in multiple activities,
inspecting objects and the code context. They made
multiple navigations to the task application window
where they wrote the correct answer that finished
the task.

General conclusions. Our analysis of the blueprint matches
accurately what is observable in the video. Once annotated we
can understand what is happening in the debugging session by
reading the blueprint alone. Video recordings were only needed
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Fig. 8: User-V (expert): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

to understand some blueprint oddities, like small interactions
in a tool without any connections to other tools. The screen
recordings showed that participants sometimes left the tool’s
window briefly (for less than 500ms) and then returned, causing
these small interactions.

VI. DISCUSSION

Concerning the visualization. The layout may have an inci-
dence on the comprehension of the visualization and possibly
on the identification of patterns. To minimize the incidence
of the layout, all the visual elements of the visualization
are manually draggable. Moreover, the debugging activity
blueprint is not a single visualization but a richer tool enabling
interactions and annotations, and providing other views to
complete the blueprint.

Debugging sessions are complex. Consequently, the visu-
alization cannot be completely simple, even if it provides an
abstraction. In particular, it was easy to analyze in detail the
User-I Treatment task and to realize that the visualization can
completely replace the video. However, for more complex
sessions as the ones of the control tasks, we need to see to
what extent it can replace the video.

The debugging activity blueprint enables the discovery of
patterns, which we graphically identified. Their semantics and

implications need to be further investigated. On the opposite,
we have not studied the sequence of debugging activities that
could have led to the identification of other patterns, that not
graphically emerged.

Concerning the analysis of a debugging session. The debug-
ging activity blueprint opened doors concerning the analysis
of debugging sessions. For example, it seems that the use
of object-centric debuggers or perhaps more largely specific
debuggers has an incidence on the flow of debugging sessions.
Similarly, we can study if the experience of the users, their
knowledge of the project to debug, or whatever criteria have
an incidence on the debugging session, not only in terms of
results (resolving the bug or not), or time, but also in the flow
of the activities inside the debugging session. We have no
answer yet, but we are convinced that now we have the tool
to better investigate debugging sessions.

VII. THREATS TO VALIDITY

Conclusion validity. Since we used a small number of sessions,
a gap may exist between our observations and what would be
found in a representative and a large set of observations. The
tasks given to participants were debugging tasks, and as such,
we have not studied micro-debugging activities that may occur
when adding a new software feature.



Construct validity. Debugging tasks were conducted using
the Pharo programming language. As such, the patterns we
discovered may be intimately related to Pharo.
Color blindness. Depending on the population, color blindness
affects about 8% of the population of men. The most common
form of color blindness is the red-green color vision deficiency.
We used an online simulator1 to verify if visual cues due
to our coloring remain perceivable in the presence of the
red-green color vision deficiency. The simulator indicates
that the visual cues are perfectly distinguishable for the red-
weak (Protanomaly) and green-weak (Deuteranomaly) visual
deficiency.
Visualization correctness. An important premise of our
exploratory experiment is that the visualization accurately
represents what happens in a real debugging session. We do
not formally prove that this is the case, however, we tame
this problem by manually comparing logs and our blueprint
analyses with screen recordings.

First, we analyzed the raw logs of the six studied debug-
ging sessions and compared them to their associated screen
recordings. For each session, we took samples of the screen
recording and we compared what was visually happening in
the video to the logs of events happening at the same time.
The events in the logs always matched the screen recordings.
In the scope of this paper, we therefore consider that the logs
represent the debugging sessions with enough precision for our
exploratory experiment.

Second, our detailed analysis of Figure 7 (treatment part)
shows that the blueprint represents a developer activity that
matches what happened in the entire debug session shown in
the screen recording. This improves our trust in the blueprint
accuracy although we did not do this detailed analysis for all
the blueprints.

VIII. RELATED WORKS

A common approach to opening up new research paths for
improving the development and debugging process is to collect
data on how developers interact with their environment while
performing development and debugging activities. There are
different approaches to collecting data on developers’ needs
and interactions.
Collecting data through observations or interviews. Fontana
and Petrillo [8] mapped breakpoints available to developers
from the literature and their observations of existing debug-
gers. Although they performed an analysis of developers’
understanding of these breakpoints, this contribution does
not provide insight of how the breakpoints are employed
in practice. Alaboudi and LaToza [9]–[12] observed and
analyzed developers’ actions while debugging, using live
observations, or video and audio records. Through interviews
with professional engineers from Microsoft, Layman et al. [13]
highlighted how practitioners use information and tools to
debug. Similarly, Alaboudi and LaToza [14] interviewed 11
professional developers and observed that they frequently

1https://www.color-blindness.com/coblis-color-blindness-simulator/

switched debugging activities after a minute. Although these
studies provide essential information for understanding the
behavior adopted by developers when debugging programs,
this mode of analysis is not scalable and seems limited to
orders of magnitude between 8 and 77 participants according
to the summary of prior studies from [13] or about 30 hours
of activity [11].

Collecting data through event logs. Another approach to
studying debugging activity is by collecting and aggregating
log data. The Mylar Monitor [15] records fine-grained events
on the Eclipse IDE, i.e. window events, selections, periods of
inactivity, commands invoked through menus or key-binding,
etc. Similarly, Rabbit Eclipse [16], FeedBaG [17], and The
ProM [18] enable the analysis of the sequence of debugging
events or actions performed by developers within an IDE,
such as the most used commands and the interactions of these
commands with files edited by developers. The last presented
tools focus on the Eclipse IDE [15], [16] and the Microsoft
Visual Studio IDE [17], [18]. The approach of collecting usage
data from the IDE suffers a significant limitation. The amount
of data to analyze depends on the precision of the recorded
actions and the length of the debugging sessions. The more
specific the action recorded (i.e. low-level, such as mouse
movements), the greater the number of events generated.

Agregating log data with algorithms. Damevski et al. [19],
[20] provide an automatic approach for identifying (using the
MG-FSM algorithm) and clustering developers’ usage patterns
from logs of Visual Studio IDE’s usage. The authors identified
20 different clusters of usage patterns and found that developers
are reluctant to use conditional breakpoints when debugging.
The Debugging Activity Blueprint differs by offering visual
support for understanding developers’ behavior, comparing
debugging sessions, and eventually identifying patterns.

Agregating log data with visualizations. For our contribution,
we record fine-grained data because we want to open up the
possibility of identifying the developers’ intent when using the
different parts of the programming environment. As Kovarova
et al. [21] suggest, we argue that aggregating the information
extracted from debugging sessions through visualization would
help explore records of developers’ activity while debugging.
Swarm debugging [22]–[25] proposes a Method Call Graph, a
Sequence Stack diagram, and a list of Step Into or Breakpoint
events for visualizing information obtained during debugging
sessions. Swarm debugging aims at sharing information found
on a given program during a debugging session among several
developers and therefore differs from The Debugging Activity
Blueprint which aims at helping researchers understand how
developers debug. DFLow [26], [27] is a visualization of object-
oriented program development sessions. The visualization
focuses on classes, methods, and related events, i.e. navigation
or edition. Whereas debugging and development are intricated
activities, our Debugging Activity Blueprint differs from DFlow
by providing more information on the debugging aspects and
focusing first on the IDE tools and their usage by developers
rather than the source code. Ferax [28] is a platform for

https://www.color-blindness.com/coblis-color-blindness-simulator/


recording developers’ activities inside and outside the IDE and
summarizing them into four views. The Debugging Activity
Blueprint does not provide information on developers’ activities
outside the IDE. However, it offers more precise data on
interactions between IDE tools and allows one to inspect tool-
specific events.

IX. CONCLUSION

Studying debugging activities is complex and challenging
due to the inherent difficulties in aggregating and interpreting
data from event logs. This complexity underscores the need
for more empirical evidence on how developers use debugging
tools.

Our proposed debugging activity blueprint addresses this
need by offering a visual tool that aids in the detailed analysis
and navigation of events within a programming environment.
The blueprint encapsulates the interactions between debuggers
and other programming tools, effectively illustrating the flow
of debugging activities within an IDE.

Through an exploratory use case involving three participants
and two distinct debugging tasks, our blueprint showed itself
to be useful in facilitating a fine-grained analysis of intricate
debugging scenarios. Furthermore, it opens several open
questions in the analysis of debugging sessions. This indicates
the potential of our approach to enhance the understanding
of debugging practices and support the development of more
effective debugging tools. Further research and validation with
larger samples and diverse tasks are recommended to confirm
and extend these findings.
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