
An API and Visual Environment to Use Neural Network to
Reason about Source Code

Alexandre Bergel
Pleiad Lab, DCC, University of Chile

Chile

Paulin Melatagia
Université de Yaoundé I, UMI 209 IRD

UMMISCO-UY1, Yaoundé
Cameroon

Serge Stinckwich
Sorbonne Université, IRD, Unité de
Modélisation Mathématiques et
Informatique des Systèmes

Complexes, UMMISCO, F-93143,
Bondy, France

France

ABSTRACT
Neural networks are gaining popularity in software engineering.
This paper presents a dedicated API and visual environment to train
and use a neural networks on software source code related data.
This short paper illustrates the API using two examples involving
prediction of source code properties.

CCS CONCEPTS
• Software and its engineering→ Software system models;

KEYWORDS
Neural network, source code, visual environment
ACM Reference Format:
Alexandre Bergel, Paulin Melatagia, and Serge Stinckwich. 2018. An API
and Visual Environment to Use Neural Network to Reason about Source
Code. In Proceedings of 2nd International Conference on the Art, Science, and
Engineering of Programming (<Programming’18> Companion). ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3191697.3214340

1 INTRODUCTION
An artificial neural network is a computing system inspired by
biological neural networks found in vetebrate brains [1]. Such an
artificial network is a collection of connected artificial neurons.
Connections between artificial neurons can transmit a signal from
one to another to answer to a particular stimulus. The artificial
neuron that receives a signal can process it, and then signal neurons
connected to it. A neural network acquires knowledge through
learning, typically from a set of inputs and expected outputs. Once
properly trained for some particular problems, an artificial neural
network can predict or make regression on data.

Neural networks are very popular to process arbitrary images
and texts written in a natural language as they are often successful
at classifying and making predictions. However, neural networks
are seldom applied to software engineering tasks, in contrast to
image, text, and sound processing. Numerous modeling libraries
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3214340

and frameworks are available to operate with neural networks.
However, we believe that reducing the gap between current neural
network-based models and source code entities represents a signif-
icant challenge. We provide an API that ease the manipulation of
source code elements with a neural network.
Contributions. This paper describes the experience we gained in
building a generic infrastructure to apply neural networks to solve
some tasks involving source code manipulation. In particular, we
designed a small API to make a neural network operates on any
arbitrary data structure, including structural source code entities.
The training of the neural network may be visually monitored using
a dedicated visual environment.
Outline. We first present a small API and a visual environment
to train and make prediction on any arbitrary data structure (Sec-
tion 2). Second, we present an example that consists in predicting
the package of a class based on the class name (Section 5). Third,
we present a second example that predict whether a method has
a comment or not based on the set of messages the method sends
(Section 6).

2 API TO USE NEURAL NETWORK
Neural networks are conceived to operate on numerical values:
feeding numerical values to a neural network produces a set of
numerical output values. We have designed an API1 to encode and
decode any arbitrary non-numerical value. Consider the following
example:

1 n := NNLang new.
2 n data: #('hello' 'bonjour' 'cow' 'tea' 'bag' 'circle' 'house' 'table' 'chair').
3 n feature: [:w | w asArray].
4 n expectedOutput: [:w | w size].
5 n epochs: 3000.
6 n train.

The script above uses the API we have designed to create a
neural network, trained to determine the length of a string character.
Line 1 instantiates an object NNLang, which is a wrapper of a neural
network. Line 2 designates the data the network has to learn from.
The data is passed as an array of words. The size of the words ranges
from 3 (e.g., 'cow' has 3 letters) to 7 ('bonjour'). Line 3 indicates the
relevant features that has to be considered for each data elements.
For example, we have 'cow' asArray produces #($c $o $w) an array
of three characters. The words provided as data elements provided
in Line 2 are made of 16 characters.
1We are using Pharo[2] (http://www.pharo.org) for all the examples provided in this
paper.

https://doi.org/10.1145/3191697.3214340
https://doi.org/10.1145/3191697.3214340

<Programming’18> Companion, April 9–12, 2018, Nice, France Alexandre Bergel, Paulin Melatagia, and Serge Stinckwich

Line 4 indicates what the expected output of each data element
has to be. The block [:w | w size] takes a word data element as
argument and returns the size of that element. For data set provided
in Line 2, there are four different possible outputs (3, 5, 6, 7). The
neural network will therefore have four different output elements,
each representing a possible output value.

We do not specify the topology of the neural network, our API
will therefore creates a fully-connected network with one hidden
layer, with 22 neurons (number of inputs, 16, multiplied by an
arbitrary factor of 1.3), and one output layer with 4 neurons (number
of different outputs).

We can employ a trained network to guess the size of some
words. For example, the following expressions:
n guess: 'tag'.
n guess: 'label'.
n guess: 'journee'.

correctly evaluates to 3, 5, and 7. These words are not part of the
training data set, however, the neural network uses the relations
learnt during the training to correctly guess the size of the words.
Naturally, this simple example cannot make a guess that it has not
learnt. For example, it will wrongly guess the size of the word 'papa'

since the neural network has never seen a word with 4 characters.
Characters that were not part of the training words will be simply
ignored. However, providing a large and varied corpus of words is
able to make accurate guesses of the size of the word.

The data set provided using the keyword data: is a set of words in
our example. The blocks to compute the feature: and expectedOutput:

are evaluated to each data set element. Most of classification tasks
employ a simple technique called one hot encoding to translate a set
of labels into a binary representation, suitable for neural network
feeding. Using a one-hot encoding, each of the possible 16 distincts
characters is represented as an input entry of the neural network.

The next section presents the visual environment associated to
this API while the following sections will use classes and methods
instead of arbitrary strings.

3 VISUAL ENVIRONMENT
Neural networks are known to be difficult to configure and to give
explanations of a given result (the black box problem). We have
designed a set of visualization and navigation tools to navigate
through the different visual projections and representation of a
neural network.

Figure 1 shows the environment in which the script given in the
previous section is executed. The figure shows six different visual
projections, marked from A to F:

• A – The main code editing window is composed of two parts.
The left one contains the script to be executed. The right
part contains a projection of the result of the training and
guessing phase. It provides some metrics about the perfor-
mance and topology of the network. Some tabs are available
to select a different projection, as listed below.

• B –One useful metric tomeasure the performance during the
training phase is the number of failed guesses made during
the training phase. The training phase uses a backprograga-
tion mechanism, which makes a guess for each training data
set element and adjusts the internal representation of the

network based on how well it guessed the element. The pro-
vided curve indicates the rate of guessing during the training
phase. When the curve reaches (or getting very close to) the
X-axis, then the neural network is considered as trained.

• C – During the training phase, the backprogragation algo-
rithm computes a delta value for each neuron. This value
corresponds to the adjustment made during the training
phase on the output layer.

• D – Gives the same information than in C, but per examples.
Each curve indicates the global adjustment made by learning
each example.

• E –Gives the topology of the neural network. In this example,
its has one hidden layer, made of 22 neurons, and one output
layer, made of 4 neurons.

• F – indicates the good guess vs wrong guess during the
training phase.

4 BENCHMARKS
This section briefly presents three applications we used to run
our experiments: GeneticAlgo is an implementation of a genetic
algorithm; Trachel is a visual elements object model; Roassal2 is a
mapping model and set of interactive data visualizations.

Systems NOP NOC NOM LOC % CM
GeneticAlgo 8 40 287 3,462 34.15
Trachel 10 125 1,298 7,132 22.96
Roassal2 75 753 8,383 93,623 17.27

We use the following metrics to characterize the applications:
NOP (Number Of Packages),NOC (Number Of Classes),NOM (Num-
ber Of Methods), LOC (number of Lines Of Code), %CM (ratio of
commented methods).

5 EXAMPLE: PREDICTING PACKAGE FROM
CLASS NAMES

A class represents a software component for which its purpose is
usually reflected in its name and in the package which the class
belongs to. Studying the possible correlation between the name
of a class and the package the class belongs to is the topic of this
section.

The research question we would like to verify is whether the
name of a class may be used to determine the package that may con-
tain the class. Put differently: do the classes contained in a package
follow a determined naming convention?

We answer this question by training a neural network with class
names cut into camel case compound words and the package of the
class as desired output. Consider the following script:
n := NNLang new.
n cut: 0.8.
n data: applicationClasses.
n feature: [:cls | cls name cutWhereCamelCase].
n expectedOutput: [:cls | cls category].
n epochs: 1000.
n train: 10.

The variable applicationClasses is bound to the classes of an ap-
plication. The feature: instruction extracts the relevant feature of
a class, in our case, the compound words of the class name. For
example, the features of a class named RTLineShape are the words RT,
Line, and Shape. The desired output is the package (called category in

An API and Visual Environment to Use Neural Network to Reason about Source Code<Programming’18> Companion, April 9–12, 2018, Nice, France

A

B

D

C

D

E

F

Figure 1: Live environment for programming and using a neural network

Pharo) to which the class belongs. Note that cutting a class name
as camel case does not preserve the order of the compound words.
From the whole set of classes, we consider 80% of applicationClasses,
randomly picked. The remaining 20% are used to compute the accu-
racy of the network. The network has only one hidden layer, made
of 10 neurons.

We obtained the following accuracies:
• GeneticAlgo: 14%
• Trachel: 83%
• Roassal2: 57%

<Programming’18> Companion, April 9–12, 2018, Nice, France Alexandre Bergel, Paulin Melatagia, and Serge Stinckwich

The different view indicates that the global error rates (Projection
C in Figure 1) and the error per example (Projection D) are reaching
a value extremely close to 0. This indicates that the data are not
contradictory. An example of contradiction could be a class named
ShapeLine belongs to a package P1 and another class named LineShape

belongs to another package P2. In such a case, the network cannot
properly learn due to the contradictions. However, we have not
faced such a case.

Trachel has a high precision. A manual inspection of the code
reveals that the code is well structured and support a strong coding
convention. On the opposite, classes of GeneticAlgo do not seem
to contain a particular coding convention.

6 EXAMPLE: PREDICTING THE PRESENCE
OF METHOD COMMENTS

Software engineers do not always comment their methods. Within
our benchmark, GeneticAlgo is the system that has the most com-
mented methods (34.15% of the 287 methods are commented) while
Roassal2 contains the fewest commented methods. We would like
to explore is whether a method body can be an indicator of the
presence of a comment or not.

Consider the following script:
n := NNLang new.
n data: applicationMethods.
n cut: 0.8.
n feature: [:compiledMethod | compiledMethod messages].
n expectedOutput: [:compiledMethod | compiledMethod comment notNil].
n train: 80.

The script creates a neural networks that accepts as input data
the set of the method defining of the three applications we used in
our benchmark. The network takes as input features the messages

(i.e., method call) sent by a method. The network learns from 80%
of the input methods whether the method is commented or not.

We obtained the following precisions:
• GeneticAlgo: 57%
• Trachel: 51%
• Roassal2: 40%

Consider the first application, GeneticAlgo. The network cor-
rectly identifies whether a method is commented or not for 57%
of the methods from the guessing set (20% of the 287 methods). If
the result would be close to 34.15% (the actual ratio of commented
methods), then the network would behave randomly. However, it
is not since the correctly guessed ratio is much larger.

7 CONCLUSION AND FUTUREWORK
This short paper presents a simple API and visual environment to
apply a neural network to verify some properties related to the
source code.

As a future work, we plan to provide a way to automatically
characterize the quality of the input data. Input data may be difficult
to get it correctly. Based on the small example given in Section 2, if
we would provide a few thousands of words long of 3 letters, then
the network will always output 3, and the prediction will be high
since the guessing dataset will have few occurrences of words not
having 3 letters.
Acknowledgments. We thank Lam Research for partially sponsor-
ing the work presented in this paper.

REFERENCES
[1] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, MIT Press Cam-

bridge, 2016.
[2] A. P. Black, O. Nierstrasz, S. Ducasse, D. Pollet, Pharo by example, Lulu. com, 2010.

	Abstract
	1 Introduction
	2 API to use neural network
	3 Visual Environment
	4 Benchmarks
	5 Example: Predicting Package from Class Names
	6 Example: Predicting the Presence of Method Comments
	7 Conclusion and Future Work
	References

