
Reducing Waste in Expandable Collections:
The Pharo Case∗

Alexandre Bergel, Alejandro Infante, Juan Pablo Sandoval Alcocer

Pleiad Lab, DCC, University of Chile

ABSTRACT
Expandable collections are collections whose size may vary
as elements are added and removed. Hash maps and ordered
collections are popular expandable collections. Expandable
collection classes offer an easy-to-use API, however this ap-
parent simplicity is accompanied by a significant amount of
wasted resources.

We describe some improvements of the collection library
to reduce the amount of waste associated with collection ex-
pansions. We have designed a new collection library for the
Pharo programming language that exhibits better resource
management than the standard library. Across a basket of 5
applications, our optimized collection library significantly re-
duces the memory footprint of the collections: (i) the amount
of intermediary internal array storage by 73%, (ii) the num-
ber of allocated bytes by 67% and (iii) the number of unused
bytes by 72%. This reduction of memory is accompanied
with a speedup of about 3% for most of our benchmarks.
We analyzed the collection implementations of Java, C#,
Scala, and Ruby: these implementations largely behave as
in Pharo’s, therefore suffering from the very same limita-
tions. Our result are likely to benefit designers of future
programming languages and collection libraries.

1. INTRODUCTION
Creating and manipulating any arbitrary group of values

is largely supported by today’s programming languages and
runtimes [Cook 2009]. A programming environment typi-
cally offers a collection library that supports a large range
of variations in the way collections of values are handled
and manipulated. Collections exhibit a wide range of fea-
tures [Cook 2009, Wolfmaier et al. 2010, Ducasse et al. 2009],
including being expandable or not. An expandable collection
is a collection whose size may vary as elements are added and
removed. Expandable collections are highly popular among
practitioners and have have been the topic of a number of
studies [Gil and Shimron 2011, Bolz et al. 2013, Joannou
and Raman 2011, Shacham et al. 2009].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Expandable collections are typically implemented by wrap-
ping a fixed-sized array. An operation on the collection is
then translated into primitive operations on the array, such
as copying the array, replacing the array with a larger one,
inserting or removing a value at a given index.

Unfortunately, the simplicity of using expandable collec-
tions is counter-balanced by resource consumption when
not adequately employed [Gil and Shimron 2011, Xu 2013,
Shacham et al. 2009]. Consider the case of a simple ordered
collection (e.g., ArrayList in Java and OrderedCollection

in Pharo). Using the default constructor, the collection is cre-
ated empty with an initial capacity of 10 elements. The 11th
element added to it triggers an expansion of the collection
by doubling its capacity. This brief description summarizes
the behavior of most of the collections in Java, C#, Scala,
Ruby, and Pharo.

We have empirically determined that in Pharo a large por-
tion of collections created by applications are empty. As a
consequence, their internal arrays are simply unused. More-
over, only a portion of the internal array is used. After
adding 11 elements to an ordered collection, 9 of the 20 slot
arrays are left unused. Situations such as this one scale up as
soon as millions of collections are involved in a computation.
Several studies have been made to evaluate the amount of
wasted memory resources [Gil and Shimron 2011, Xu 2013,
Shacham et al. 2009], however, as far as we are aware of,
we present here the first case study made on expandable
collections.

We have selected the Pharo programming language for our
study. Pharo1 is a dynamically typed programming language
which offers a large and rich collection library. Pharo is
syntactically close to Ruby and Objective-C. Conducting
our experiment in Pharo has a number of benefits. Firstly,
Pharo offers an expressive reflective API which greatly reduce
the engineering effort necessary to modify and replace the
collection library. Secondly, the open source community that
supports Pharo is friendly and is looking for contribution for
improvement, which means that our results are to have a
measurable impact across Pharo developers.

This article is about measuring wasted resources in Pharo
(memory and execution time) due to expandable collections.
Improvements are then deduced and we measure their im-
pact. The improvements we propose are popular techniques:
lazy object creation and recycling objects in a pool of fre-
quently created objects. This article carefully evaluates the
application of these well known techniques on the collection
implementation. The analyses that this article describes

1http://www.pharo-project.org

1

http://www.pharo-project.org

focus on the profiling of over 6M expandable collections pro-
duced by 15 different program executions. Research questions
we are pursuing are:

A - How to characterize the use of expandable collections
in Pharo? Understanding how expandable collections
are used is highly important in identifying whether or
not some resources are wasted. And if this is case, how
such waste occurs.

B - Can the overhead associated with expandable collec-
tions in Pharo be measured? Assuming the characteri-
zation of collection expansions revealed some waste of
resources, measuring such waste is essential to properly
benchmark improvements that are carried out either
on the application or the collection library.

C - Can the overhead associated with expandable collec-
tions in Pharo be reduced? Assuming that a benchmark
to measure resource waste has been established, this
question focuses on whether the resource waste accom-
panying the use of a collection library can be reduced
without disrupting programmer habits.

Our results shows the Pharo collection library can be
significantly improved by considering lazy array creation and
recycling those arrays. The expandable collections of Java,
Scala, Ruby and C# are very similar to those of Pharo, and
therefore largely exhibit the same deficiencies, as described
in Section 8. We therefore expect our recommendations to
be beneficial in these languages.

This article is structured as follows: Section 2 describes
the Pharo expandable collections and synthesizes their imple-
mentation. Section 3 describes a benchmark composed of 5
Pharo applications and a list of metrics. Section 4 details the
use of expandable collections in Pharo, both from a static
and dynamic point of view. Section 5 details the impact
on our benchmark to have lazy array creation. Section 6
presents a technique to recycle arrays among different col-
lections. Section 7 describes an approach to find missing
collection initialization. Section 8 discusses the case of other
languages. Section 9 presents the work related to this article.
Section 10 concludes and presents our future work.

2. PHARO’S EXPANDABLE COLLECTIONS
This section discusses expandable collections from the

point of view of Pharo. However, the problematic situations
we present here are found in most expandable collections of
other languages (see Section 8 for a detailed comparison).

The collection library is a complex piece of code that ex-
hibits different complex aspects [Cassou et al. 2009]. One
of these aspects is whether a collection created at runtime
may be resized during the life time of the collection. We
qualify a collection with a variable size as “expandable”. An
expandable collection is typically created empty, to be filled
with elements later on. In Pharo 3.0, the collection library
is modeled as a set of 77 classes, with each class being a
direct or indirect subclass of the root Collection class. Out
of the 77 classes that compose the Pharo collection library,
34 are expandable. Typical expandable collections include
dictionaries (usually implemented with a hash table), lists,
growable arrays in which elements may be added and re-
moved during program execution. Interestingly, expandable
collections in Pharo, C#, Ruby, Java, and Scala are designed

to only expand. Although the internal array may be ex-
plicitly trimmed (by using trimToSize() in Java), removing
elements from a collection does not trigger any shrinkage of
the internal collection. We therefore only focus on element
addition and not removal.

Issues with expansions. Expandable collections are re-
markable pieces of software: most expandable collections
have a complex semantic hidden behind a simple-to-use in-
terface. Consider the class Dictionary. The class employs
sophisticated hashing tables to balance efficiency and re-
source consumption. Such complexity is hidden behind what
may appear as trivial operations. The programmer has to
simply address what to add or remove from the collection
while the collection implementation takes care of managing
the collection’s inner storage accordingly.

Expandable collections commonly used in Pharo employ
a fixed-sized array as an internal data structure for storage.
Adding or removing elements from an expandable collection
are translated into low-level operations on the internal stor-
age, typically copying, setting or emptying a particular part
of the array storage.

The creation of an expandable collection may be parametri-
zed with an initial capacity. This capacity represents the
initial size of the array’s internal storage. The size of the
collection corresponds to the number of elements actually
stored in the collection. Adding elements to a collection
increases its size and removing elements decrease it (but do
not decrease the size of the inner storage array). When the
size of the expandable collection reaches its capacity or close
to it, the capacity of the collection is increased, leading to an
expansion of the collection. A collection-specific threshold
ratio size / capacity drives the collection expansion. A 0.75
and 1.0 are commonly used thresholds (0.75 for collections
operating with hashtags values and 1.0 for every other collec-
tion). Consider the class OrderedCollection, a frequently
used expandable collection. Consider an ordered collection
of a given capacity c. Adding one element to the collection
increases its size s by one. When s = c, then the collection
is expanded to have a capacity of 2c elements.

Expanding a collection is a three-step operation summa-
rized as follows:

1. Creation of a larger new array – the size of the collection
having reached its capacity (i.e., the size of the internal
data storage), a new array is created, typically twice
as large as the original array.

2. Copying the old array into the new one – content of
the old array is entirely copied into the first half of the
new array.

3. Using the new array as the collection’s storage – the ex-
pandable collection takes the new array as its internal
storage, realized by simply making the storage vari-
able point to the new array. The old array is garbage
collected since it is not useful anymore.

Although efficient in many situations, expandable collec-
tions may result in wasted resources, as described below.

Expansion overhead. Expanding a collection involves cre-
ating and copying of possibly large internal array storage.
Consider the following micro benchmark:

c := OrderedCollection new.
[30000000 timesRepeat: [c add: 42]] timeToRun

2

=> 3375 milliseconds

This benchmark simply measures the time taken to add
30 million elements to an ordered collection. In our current
execution setting, the micro benchmarks reported in this
section have a variation of 7%.

The class OrderedCollection, when instantiated using
the default constructor, as above, uses an initial capacity
of 10 elements. An expansion of the collection occurs when
adding the 11-th element. The capacity is then doubled. The
size of the collection is 11 and its capacity is 20. When the
21st element is added to it, its capacity is 40.

Adding 30 million elements in a collection triggers log2(30
000 000 / 10) = 22 expansions. Such expansions have heavy
cost, both in terms of memory and CPU time. When the
capacity is equal to or greater than the number of elements
to be added:

c := OrderedCollection new: 30000000.
[30000000 timesRepeat: [c add: 42]] timeToRun =>

=> 1356 milliseconds

In such a case, no expansion occurs, thus resulting in
adding the elements without any expansion phases.

The case of LinkedList. In Pharo, all but one expandable
collection use an array as internal storage. LinkedList uses
a linked element instead. For this reason we have voluntary
excluded this class from our analysis.

In Java, all collection classes (with the exception of Linked
-List, Tree, TreeSet, TreeMap, Queue) use an array as in-
ternal storage. These non-array-based collection classes are
not free of problems. For example, a linked list used in place
of an ArrayList may suffer from costly random accesses (e.g.,
LinkedList.get(int)). By not using an internal array, we
leave these issues out of the scope of this article.

Copying of memory. At each expansion of the collection,
the whole internal array content has to be copied into the
newly created array. Consider the OrderedCollection in
which 30 M elements are added to it. Since the collection
is expanded 22 times, the internal array has been copied 21
times.

At the first expansion, when the internal storage grows
from 10 to 20 slots, 10 slots are copied. Since each array
slot is 4 bytes long, 40 bytes have been copied. 80 bytes are
copied for the second expansion. Since the internal array size
increases exponentially, the number of bytes that are copied
scale up easily. Adding 30M elements produces 22 expansions,
incurring

∑21
i=0 10 ∗ 2i = 41M slot copies. In total, 41 ∗ 4 =

164Mb of memory are copied between unnecessary arrays.
Such copying could be reduced or avoided by giving a proper
initial capacity to the collection.

Virtual memory. The memory of a virtual machine is
divided into generations. Garbage collection happens by
copying part of a generation into a clean generation. Such
copying is likely to happen across memory pages [Wilson and
Kesselman 2000], since the new array is likely to be in the
young generation (i.e., part of the memory used for short
lived objects and new object creations). In addition, the
copying of arrays may activate part of the virtual memory
stored on disk if the part of the memory containing the old
array has been swapped to disk [Wilson and Kesselman 2000].

Collector pauses. Garbage collection copies and joins por-
tions of memory to reduce memory fragmentation [Joannou

and Raman 2011]. Copying and scanning a large portion
of memory, such as collections, may cause large and un-
predictable memory recollection pause times. The garbage
collection pauses in proportion to array size [Sartor et al.
2010].

Unnecessary slots. Expanding a collection doubles the size
of the internal array representation. As a consequence, a
collection having a size less than its capacity has unused
slots.

For example, adding 30 million elements to a collection
with the default initial capacity generates 22 expansions.
After the 22nd expansion, the collection has a capacity of
10 ∗ 222 = 41,943,040, large enough to contain the 30,000,000
elements. As a consequence, the collection has 41,943,040 −
30,000,000 = 11,943,040 unused slots. Since each slot weighs
4 bytes, nearly 48Mb of memory are unused after having
added the 30M elements.

Note that the issue of having the unused portion of the
array has already been mentioned (Pattern 1, 3, 4 in [Chis
et al. 2011]). Our article reports the evolution of the amount
of unused memory space against the improvement we have
designed of the collection library. Our approach to address
this issue is new and has not been considered before.

3. BENCHMARKING AND METRICS
To move away from micro-benchmarks and understand this

phenomenon better on real applications, we pick a represen-
tative set of Pharo applications and profile their execution.

3.1 Benchmark descriptions
We pick 5 open source software projects from the Pharo

ecosystem stored on the Pharo forge2. These applications,
listed in Table 1, have been selected for our study for two
reasons:

• They are actively supported and represent relevant as-
sets for the Pharo community. Therefore, our results
are likely to raise interest from this community essen-
tially composed of industrials. These applications are
daily used both in industries and academia.

• The community is friendly and interested in collabo-
rating with researchers. As a results, developers are
accessible and positive in answering our questions.

We employ the benchmark to approximate how expandable
collections are used in general. The 5 applications we have
picked are CPU intensive and the benchmark are likely to
reflect practical and representative execution scenarios. Each
application comes with a set of benchmarks. We have arbi-
trarily picked 3 for each application. These benchmarks have
been written by the authors of the considered application
and represent a typical heavy usage of the application. In
case that the application was shipped with less than three
benchmarks, we kindly asked the authors to provide new
additional benchmarks.

3.2 Metrics about the collection library
We propose a set of metrics to understand how expandable

collections are used and what the amount is of resulting
wasted resources. The metrics that we propose to character-
ize the use of expandable collections for a particular software
execution are:
2http://smalltalkhub.com

3

http://smalltalkhub.com

index Application LOC #Ref
1 AST 8,091 57
2 Nautilus 1,566 9
3 Petit 14,919 95
4 Regex 5,055 16
5 Roassal 19,844 133

Table 1: Description of the benchmark (the #Ref column
indicates the number of references to expandable collection
in source code)

• NC – Number of expandable Collections – This metric
corresponds to the number of expandable collections
created during an execution. This metric is used to
give relative numbers (i.e., percentages) for most of
the metrics described below.

• NNEC – Number of Non Empty Collections – Number
of expandable collections that are not empty, even
temporarily, during the execution.

• NEC – Number of Empty Collections – Number of
expandable collections to which no elements have been
added during the execution. A collection for which
elements have been added then removed are not counted
by NEC.

• NCE – Number of Collection Expansions – Number
of collection expansions happening during the program
execution.

• NCB – Number of Copied Bytes due to expansions –
Amount of memory space, in bytes, copied during the
expansions of expandable collections.

• NAC – Number of internal Array Creations – Number
of array objects created used as internal storage during
the execution.

• NOSM – Number of collections that are filled Only in
the Same Methods that have created the collections.
A collection that is both created and filled within a
method m is counted. A collection that is created in a
particular method, and then passed to another in order
to be filled is not counted.

• NSM – Number of collections filled in the Same Methods
that have created them. A collection that is created
and filled in the same method m is counted, regardless
if the collection escapes m.

• NAB – Number of Allocated Bytes – Accumulated
size of all the internal arrays created by a collection.

• NUB – Number of Unused Bytes – Size of the unused
portion of the internal array storage. For a given collec-
tion, this metric corresponds to the difference capacity
− size.

These methods will be employed to characterize expand-
able collections from a perspective of unused allocated re-
sources. To our knowledge, these methods are new and have
not been proposed by any other research effort.

3.3 Computing the metrics
Measuring these metrics involves a dynamic analysis to

obtain an execution blueprint for each collection. We have
instrumented the set of expandable collections in Pharo to
measure these metrics.

We measure only the collections that are directly created
by an application. Computation carried out by the runtime
is not counted. If we equally counted collections created by
the runtime and the application, a residual amount would
have to be determined since the same collections may be
counted several times across different applications.

Collections are often converted thanks to some utility meth-
ods. For example, an ordered collection may be converted
as a set by sending the message asSet to it. Converting an
expandable collection into another expandable collection are
considered in our measurements.

Our measurements, used to characterize the use of ex-
panded collections and measure wasted resources associated
with them, have to be based on representative application
executions, close to what programmers are experiencing. Un-
fortunately, Pharo does not offer a standard benchmark for
measuring performance in the same spirit as DaCaPo [Black-
burn et al. 2006] and SpecJVM. We have designed our bench-
mark from performance scenarios of program executions.

The tables given at the end of the article show the results
of our measurements. Table 3 gives the measurement of our
benchmark using the standard collection library of Pharo.
This table is used as the baseline for our improvements of
the library.

Minimizing measurement bias. Carefully considering
measurement bias is important since an incorrect setup can
easily lead to a performance analysis that yields incorrect
conclusions. Despite numerous available methodologies, it is
known that avoiding measurement bias is difficult [Kalibera
and Jones 2013, Mytkowicz et al. 2009, Georges et al. 2007].
An effective approach to minimize measurement bias is called
experimental setup randomization [Mytkowicz et al. 2009],
which consists in generating a large number of experimental
settings by varying some parameters, each considered param-
eter being a potential source of measurement variation. Our
measurements are programmatically triggered, meaning that
multiple runs of our benchmark is easily automatized. We
have considered the following parameters:

• Hardware and OS – We have used two different hard-
wares and operating systems ((a) a MacBook Air,
1.3Ghz Intel Core I5, 4Gb 1333 MHz DDR3, with
a solid hard disk running OS X 10.10.2 and (b) iMac,
Quad-core Intel Core i5, 8 Gb, running OS X 10.9).

• Heap size – We run our experiments using different
initial size of the heap (100Mb, 500Mb, 1000Mb).

• Repeated run – For each execution of the complete
benchmark, we have averaged 5 runs, with a random
pause between each run.

• Randomized order – The individual performance bench-
marks are randomized at each complete benchmark run.

• Reset caches – Method cache located in the VM are
emptied before each run.

• GC – Garbage collector has been activated several
times before running each benchmark.

4

In total, we have considered 9 different experimental setups.
We did not notice any significant variation between these
experimental setups.

The measurements given in the appendix are the result
of an average of 9 different executions, each considering a
different combination of the parameters given above.

4. USE OF EXPANDABLE COLLECTIONS
IN PHARO APPLICATIONS

This section analyzes the use of expandable collections in
Pharo applications. The results given in this section answer
the research question A.

4.1 Dynamic analysis
We have run our two sets of our benchmark and profiled

their executions. The metrics given in Section 3.2 have been
computed and reported in Table 3 for each of the application’s
execution. The execution of the 15 performance benchmarks
create 6,129,207 expandable collections.

Naturally, very few of these expandable collections live
through the whole execution since the garbage collector regu-
larly cleans the memory by removing unreferenced collections.
In our measurements, we do not consider the action of the
garbage collector on the collection themselves since garbage
collection is orthogonal to the research questions we are
focusing on.

The number of created collections indicates large disparities
between the analyzed applications. Benchmarks bReg1 and
bReg2 involve a long and complex execution over a significant
amount of data, indicated by the large number of created
expandable collections. Benchmarks bN1, bN2, bN3 create a
small number of collections.

Variation in the measurements. Two executions of the
same code may not necessarily create the same number of
collections, even if no input/output or random number gen-
eration is involved. Measurements vary little over multiple
runs of the benchmarks. Values reported in the tables in the
appendix have been obtained after multiple runs and have an
average variation of 0.0095%. Although the applications we
have selected for our case study do not make use of random
number generation, the use of hash values can make non
deterministic behavior. A hash value is given by the virtual
machine when the object is created. In the case of Pharo,
such a hash value depends on an internal counter of the
virtual machine. Consider the following code:

d := Dictionary new.
d at: key1 put: OrderedCollection new.
d at: key2 ifAbsentPut: [OrderedCollection new]

The class Dictionary uses the equality relation and hash
values between keys to insert pairs. If we have the relation
key1 = key2 and key1 hash = key2 hash, then the dictio-
nary considers that the two keys are actually the same and
we have only one instance of OrderedCollection. However,
in case that the hash is not overridden but = is overridden,
the relation key1 hash = key2 hash may be true only spo-
radically, thus triggering a non deterministic behavior over
multiple executions3.

3Redefining = without redefining hash is a classic defect
in software programs and it is widely recognized as such.
Unfortunately, this defect is frequent.

Empty collections. Table 3 indicates a surprisingly high
proportion of empty collections in our benchmarks. From
over 6.1 million expandable collections created by our bench-
marks, 4.4 million (73%) have been created without having
any element added to them. Only 26% of collections have at
least one element added to them during their lifetime.

To understand this phenomenon better, we will take a
closer look at the data we obtained. The number of empty
collections created by our benchmark varies significantly
across applications. Benchmark bReg2 creates a total of
2.1M of expandable collections, for which only 0.4M are non-
empty. This application is a regular expression engine that
applies pattern matching. The engine is complex due to the
underlying optimized logic engine.

Figure 1 shows the frequency distribution of the perfor-
mance benchmarks.

Cause of empty collections. We manually have inspected
the applications and benchmarks that generate a high propor-
tion of empty collections. A large proportion of the created
empty collections is caused by the object initialization spec-
ified in the constructors. Consider the constructor of the
class RBVariableEnvironment:

RBVariableEnvironment >> initialize
super initialize.
instanceVariables := Dictionary new.
classVariables := Dictionary new.
instanceVariableReaders := Dictionary new.
instanceVariableWriters := Dictionary new

This constructor implies that each instance of RBVariable
Environment comes with at least four instances of dictionar-
ies. Most instances of RBVariableEnvironment actually have
their dictionaries empty, which contributes to the 98% of the
collections created by Benchmark 10 being left empty. This
is not an isolated case. The 17 applications under study are
composed of 1,713 classes. We have 375 of these 1,713 classes
that explicitly define at least one constructor. We have also
found that 144 of these 375 classes explicitly instantiate at
least one expandable collection when being instantiated. Ex-
pandable collections created in the constructor is a prominent
cause of unused collections.

Number of array creations. The standard collection li-
brary creates a new array at each collection expansion. Since
instantiating a collection results in creating a new array, the
number of created arrays (NAC) subtracted to the number
of expansions (NCE) is equal to the number of collections
(NC). We have roughly the following relation NAC − NCE
= NC in Table 3. Some differences may be noticed due to
rehashing operations on hash-based collections (e.g., Hash-
Set, Dictionary) that may be triggered by an application.
Such effects are marginal and have a little impact on the
overall measurements, which is why we do not investigate
such minor variations further.

Collection expansions. From the 6.1M of collections (NC
column in Table 3), 1,637,669 (26%) of the collections are ex-
panded 980,792 times during the execution of the benchmark
(NCE column). These expansions result in over 46.9Mb of
copies between these arrays (NCB column).

Unused memory. Summing up the memory consumed by
all the internal arrays yields over 253Mb (NAB column).
More than 228Mb of these 253Mb are actually unused (NUB
column) as a result of having expandable collections filled
only a little on average (i.e., the size of the collection being

5

4

3

2

1

0
0 10 20 30 40 50 60 70 80 90 100

% of filled collections

number of
benmarks

Figure 1: Frequency distribution of filled collections (NNEC)

much below its capacity).

4.2 Reducing the overhead incurred by collec-
tion expansions

The measurements given in the previous section reveal
that the use of expandable collections may result in wasted
CPU and memory consumption. We use the observations
made above to reduce the overhead caused by expansions.
We propose three heuristics to reduce the overhead incurred
by expandable collections:

Creating the internal array storage on demand. Cre-
ating an internal array only when necessary, i.e., at the
first element added. Since 76% of arrays are empty, lazily
instantiating the internal array will be beneficial.

Reusing arrays when expanding. Expanding a collection
involves creating an array larger than the previous one (usu-
ally twice the initial size). After copying, the original array
is discarded by removing all references to it. The task to free
the memory is then left to the garbage collector.

Instead of letting the garbage collector discard old arrays,
arrays can be recycled: a collection expansion frees an array,
which itself may be used when another collection expands.

Setting an initial capacity. About 10% of expandable
collections are created and filled in the same method. These
10% of the collections have been created by 276 methods
across our benchmark. There are 105 of these 276 methods
that use the default construction with the default initial
capacity.

Some of these methods may be refactored to create ex-
pandable collections with an adequate initial capacity.

We have designed the OptimizedCollection library, a collec-
tion library for Pharo that exhibits better resource manage-
ment than the standard set of collection classes. Optimized-
Collection implements the design points made above. Sec-
tion 5, Section 6 and Section 7 elaborate on each of these
points.

5. LAZY INTERNAL ARRAY CREATION

For the programming languages we have studied, expand-
able collections have been implemented under the assumption
that a collection will be filled with elements. This assumption
unfortunately does not hold for the usage scenarios we are
facing in our benchmark. Less than a third of the expandable
collections are filled in practice. This suggests that creating
the internal array only when elements are added is likely to
be beneficial. We call this mechanism lazy internal array
creation.

As far as we are aware of, lazy internal array creation for
expandable collections has not been reported in the academic
literature or in engineering notes. Lazy initialization is a well
known technique to allocate memory only when necessary.
Surprisingly, using lazy initialization to optimize expandable
collection has been little considered (except a very few excep-
tions in the Java and C# collections) despite the significant
memory overhead collections may generate [Gil and Shimron
2011].

This section first describes the design points of lazy internal
array creation and reports measurements on our benchmarks.

5.1 Creating the array only when necessary
Introducing a lazy creation of the internal array is relatively

easy to implement. Instead of creating the internal storage
in the constructor, we defer its creation when adding an
element to the collection. For this, we need to remember the
capacity for the future creation of the array. Methods that
add elements to the collection have to be updated accordingly.

This simple-to-implement improvement leads to a signifi-
cant reduction in memory consumption. Using the default
capacity, an empty ordered collection now occupies 20 bytes
only (in comparison with the 64 bytes without supporting
lazy internal array creation). After adding an element to the
collection, the internal array is created, thus increasing the
size of the collection to 64 bytes.

We have implemented the lazy internal array creation as
described above in all the expandable collection classes. The
following section describes the impact on our case studies.

5.2 Lazy creation on the benchmark
Table 4 gives the metric values of our benchmark when

6

using the lazy internal array creation. Contrasting Table 3
(using the standard collection library, i.e., without lazy in-
ternal array creation) with Table 4 (lazy creation) shows
a significant reduction of unused memory and number of
created internal arrays. More specifically, we have:

• The number of array creation (NAC) has been signif-
icantly reduced as one would expect. It went from
6,205,920 down to 1,874,940, representing a reduction
of (6,205,920 − 1,874,940) / 6,205,920 = 69.78% of
array creation.

• The number of unused bytes (NUB) has also been sig-
nificantly reduced. It went from 228Mb down to 61Mb,
representing a reduction of (228,171,448 − 61,393,008)
/ 228,171,448 = 73.09%.

The lazy internal array creation has a slight positive impact
on the execution time of the benchmark. By lazily creating
the internal arrays, the execution time of all runs has been
reduced by 2.38%.

6. RECYCLING INTERNAL ARRAYS
A collection expansion is carried out with three sequential

steps (Section 2): (i) creation of a larger array; (ii) copying
the old array into the new one; (iii) replacing the collection’s
storage with the new array. The third step releases the
unique reference of the array storage, entitling the array to
be disposed by the garbage collector. This section is about
recycling unused internal arrays and measures the benefits
of recycling.

The general mechanism of recycling arrays along a pro-
gram execution is not new. It has already been shown that
for functional programming avoiding unnecessary array cre-
ation by recycling those arrays is beneficial [Kagedal and
Debray 1996]. Recycling arrays in a context of expandable
collections is new and, as far as we are aware of, it has not
been investigated.

6.1 Recycling arrays on the benchmark
Principle. Instead of releasing the unique reference of an
array, the array is recycled by keeping it within a globally
accessible pool. The array disposed after a collection expan-
sion is inserted in the pool. The first step of expansion has
now to check for a suitable array from the pool. If a suitable
array is found, the array is removed from the pool and used
as internal array storage in the expanded collection. If no
array from the pool can be used as internal array storage
for a particular collection expansion, a new array is created
following the standard behavior.

When an array is inserted into the pool, the array has to
be emptied so as to not keep unwanted references. Emptying
an array is done by filling it with the nil value.

Need for different strategies. Consider the following ex-
ample:

c1 := OrderedCollection new.
50 timesRepeat: [c1 add: 42].
c2 := OrderedCollection new.
c3 := OrderedCollection new.

Filling c1 with 50 elements triggers three expansions, which
increases the capacity from 10 to 20, from 20 to 40 and from
40 to 80. Having c1 of a capacity of 80 is sufficient to contain

metrics S1 S2 S3
NC 6,127,788 6,127,788 6,127,788
NCE 980,792 977,904 980,805
NCB 46,953,084 45,314,124 47,140,001
NAC 1,874,940 1,875,235 1,876,520
NAB 86,510,132 90,120,012 86,451,502
NUB 61,393,008 70,825,135 61,851,892
#full GC 80 88 80
#incr GC 28,884 28,846 40628

Table 2: Effect of the different strategies for the unit test
benchmarks (best performance is indicated in bold)

the 50 elements. The creation of the collection and these
expansions has created and released three arrays sized 10,
20, 40, respectively. These arrays are inserted in a pool of
arrays.

When c2 is created, an array of size 10 is needed for its
internal array storage. The pool of arrays contains an array
of size 10 (obtained from the expansion of c1). This array is
therefore removed from the pool and used for the creation of
c2.

Similarly, c3 requires an array of size 10. The pool contains
two arrays, of size 20 and size 40. The creation of the ordered
collection faces the following choice: either we instantiate
a new array of size 10, or we use one of the two available
arrays.

This simple example illustrates the possibility of having
different strategies for picking an array from the pool. We
propose three strategies and evaluate their impact over the
benchmark:

S1: requiredSize = size – Pick an array from the pool of
exactly the same size that is requested

S2: requiredSize <= size – Pick the first array with a size
equal to or greater than what is requested

S3: size * 0.9 < requiredSize < size * 1.1 – Pick an array
which has a size within a range of 20% of what is
requested.

The effect of the different strategies on the benchmarks
is summarized in Table 2. We consider 8 metrics: NC
(number of created expandable collections), NCE (number
of collection expansions), NCB (number of copied bytes),
NAC (number of internal array creations), NAB (number of
allocated bytes), NUB (number of unused bytes), the number
of full garbage collections and the number of incremental
garbage collections.

S1 generates less unused array portions (NUB) than S2
and S3. S2 incurs less collection expansions than S1 and S3,
which also result in fewer copied bytes (NCB). Oddly, the
number of incremental garbage collections is higher with S3.
Result given in Table 5 uses Strategy S1 since this strategy
is more effective than the two other regarding the number of
unused bytes (NUB metric).

Effect on the benchmark. When supporting the lazy in-
ternal array creation without recycling arrays (Table 4), the
number of unused bytes (NUB column) has increased by
(61, 420, 484 − 61, 393, 008)/61, 393, 008 = 0.04%. The re-
duction of the number of created arrays (NAC column) is
(1, 798, 578− 1, 874, 940)/ 1, 874, 940 = 4%. In all, 35,063 col-
lections have been recycled. More interestingly, the technique

7

of reusing arrays has reduced the number of allocated bytes by
9.4% (column NAB : (86, 510, 132−78, 373, 588)/86, 510, 132 =
9.4%).

After profiling the benchmark, the number of collections
left over in the pool is rather marginal. Only 216 collections
are in the pool, totaling less than 89kB.

Using the pool of arrays incurs a relatively small execution
time penalty. This represents an increase of 5.8% of execution
time when compared with the lazy array creation and an
increase of 2.8% with the original library.

12/3/13, 10:22 AM

Page 1 of 1file:///Users/alexandrebergel/Desktop/distribution.svg

6588

4941

3294

1647

0

5

10

11
20 40

number of
recycled arrays

size of recycled arrays0

Figure 2: Distribution of recycled arrays
Recycled arrays. The techniques described in this section
recycle arrays of different sizes. Figure 2 shows the distribu-
tion of size of recycled arrays for Strategy S1. The vertical
axis indicates the number of recycled arrays. The horizontal
axis lists the size of arrays that are effectively recycled.

Arrays that are the most recycled have a size of 5 and
10. The standard Pharo library is designed as follows: 5
corresponds to the minimum capacity of hash-based collec-
tions, and 10 is the default size of non-hashed collections4.
The value 20 corresponds to the size of the internal array of
a default collection after expansion. An array of size 40 is
obtained after a second expansion.

Multi-threading. The pool of recycled internal array is
globally accessible. Accesses to the pool need to be ade-
quately guarded by monitors to avoid concurrent addition or
removal from the pool. Several of the applications included
in our benchmark are multi-threaded. Previous work on
pooling reusable collections [Shirazi 2002] shows satisfactory
performance in a multi-threaded setting.

6.2 Variation in time execution
If we consider the global figures, recycling arrays has a

penalty of 3% of execution time in the average. However,
if we have a close look at each individual benchmark, we
see that most of the performance variation indicates that
our optimized collection library performs slightly faster than
the standard collection library (in addition to significantly
reduce the memory consumption, as detailed in the previous
sections).

Figure 3 shows the variation of execution time of the
performance benchmarks between the standard collection
library and our optimized library. All but two benchmarks are
slightly faster with our library. The execution of benchmarks

4Note that we are not arguing whether 5 and 10 are the right
default size. Other languages including Scala and Ruby use
a different default capacity size. We are simply considering
what the Pharo collection library offers to us.

bPP3

bN2

time

Benchmarks

Standard Optimized

Figure 3: Impact of execution time of the optimized collection
library

bN2 takes 6,738 seconds with the standard collection library
and takes 6,789 with our library. Since this represents a
variation of (6, 789− 6, 738)/6, 738 = 0.7%, we consider this
variation as insignificant.

Benchmark bPP3 goes from 6,330 seconds with the stan-
dard library to 7,010 with our optimized library, which rep-
resents an increase of 9.7%. The reason for this drop in
performance is not completely clear to us. This benchmark
parses a massive amount of textual data. Private discussion
with the authors of the considered application revealed the
cause of this variation may be due to the heavy use of short
methods on streams. Traditional sampling profiler does not
identify the cause of the performance drop, indicating it
stems from particularities of the virtual machine (for which
its execution is not captured by the standard Pharo profiler).
These short methods have an execution time close to the
elementary operations performed by the virtual machine to
lookup the message in method cache. Although we carefully
designed our execution by emptying different caches and
multiply activating the garbage collection between each exe-
cution, the reason of the performance drop may be related
to some particularities of the cache in the virtual machine.

By excluding the benchmark bPP3, our library performs
3.01% faster than with the standard collection library.

7. SETTING INITIAL CAPACITIES
A complementary approach to improving the collection

library is to find optimization opportunities in the base
application (which makes use of the collection library).

Example. We have noticed recurrent situations for which
an expandable collection is filled in the same method that
creates the collection. The following method, extracted from
a case study, illustrates this:

ROView>>elementsToRender
”Return the number of elements that will be rendered”
| answer |
answer := OrderedCollection new.
self elementsToRenderDo: [:el | answer add: el].
ˆ answer

8

The method elementsToRender creates an instance of the
class OrderedCollection and stores it in a temporary variable
called answer. This collection is then filled by iterating over
a set of elements.

The method elementsToRender uses the default construc-
tor of the class OrderedCollection, which means a default
capacity to the collection is given. As described in the previ-
ous sections, such a method is a possible source of wasted
memory since a view may contain a high number of ele-
ments, thus recreating the situation we have seen with the
micro-benchmark in Section 2.

By inspecting the definition of the method elementsToRenderDo:

, we have noticed that the number of elements to render is
known at that stage of the execution. The method may be
rewritten as:

ROView>>elementsToRender
”Return the number of elements that will be rendered”
| answer |
answer := OrderedCollection new: (self elements size).
self elementsToRenderDo: [:el | answer add: el].
ˆ answer

This new version of elementsToRender initializes the ordered
collection with an adequate capacity, meaning that no re-
source will be wasted due to the addition of elements in the
collection referenced by answer.

Profiling. The metrics NOSM and NSM identify meth-
ods that create a collection and fill it. The instance of
OrderedCollection created by the method elementsToRender

is counted by NSM since the collection is created and filled
in this method. The collection is also counted by NOSM in
the case that no other methods add or remove elements from
the result of elementsToRender.

We see that about 8% of the expandable collections are
immediately filled after their creation. We also notice that
slightly fewer collections are only filled in the same method in
which they were created. We are focusing on these collections
since they are likely easy to refactor without requiring a deep
knowledge about the application internals.

The NOSM and NSM metrics are computed by instru-
menting all the constructors of expandable collection classes
and all the methods that add and remove elements.

Refactoring methods. The 670,064 collections (NOSM
column) that are filled solely in the methods that have created
them have been produced by exactly 276 methods. We have
manually reviewed each of these methods. We have refactored
105 of the 276 methods to insert a proper initialization of
the expandable collection. The remaining 171 methods were
not obvious to refactor. Since we did not author these
applications and had a relatively low knowledge about the
internals of the analyzed applications, we took a conservative
approach: we have refactored only simple and trivial cases for
which we had no doubt about the initial capacity, as in the
example of elementsToRender given above. We use unit-test
to make sure we did not break any invariant captured by the
tests.

Impact on the benchmark. Table 6 details the profiling
for the benchmark by lazily creating internal arrays, reusing
these arrays and refactoring the applications. By comparing
from Table 5 to Table 6, the reduction gain for the number
of allocated bytes is 0.05% (column NAB, which goes from

78.37Mb to 78.33Mb). The amount of unused space has been
reduced by 0.06% (column NUB, which goes from 61.42Mb
down to 61.38Mb). No variation in terms of execution time
has been found.

Setting the capacity. We have run the modified version of
our benchmark with the original collection library, without
the recycling and the lazy array creation. Gains are marginal.
Only a reduction of 0.05% of the number of allocated bytes
has been measured. We conclude that the obtained gain by
allocating a proper initial capacity is marginal.

8. OTHER PROGRAMMING LANGUAGES
This section reviews four programming languages (Java,

C#, Scala, and Ruby) by briefly describing how collections
are handled in these and how our results may be applied to
them.

Java. The Java Collection Framework is composed of 10
generic interfaces implemented by 10 classes. In addition,
the framework offers 5 interfaces for concurrent collections.
We restrict our analysis to general purpose collections since
concurrent collections are often slower due to their synchro-
nization.

JDK 6 suffers from the same problems than the Pharo
implementation of the collection. In JDK 7 and 8, the classes
ArrayList, TreeMap, HashMap have been improved with the
lazy internal array creation.

However, several classes suffer from the problem we have
identified, even in JDK 8. For example, the classes Hashtable
, Vector, and ArrayDeque creates an internal array of size
10 when instantiated, therefore presenting the very same
problem we have identified in Pharo.

C#. ArrayList is similar to its Java sibling and Pharo’s
OrderedCollection. The C# version of ArrayList initial-
izes its internal array with an empty array, resulting in an
implementation equivalent to the lazy internal array creation
(Section 5). Similarly to ArrayList, Stack initializes its in-
ternal array storage with an empty list, thus triggering an
expansion at the first element addition.

On the other hand, Hashtable, Dictionary, and Queue

do not lazily create the internal array, making these classes
suffer from the problems we have identified in this article.

Scala. Instead of simply wrapping Java collections as many
languages do when running on top of the Java Virtual Ma-
chine, Scala offers a rich trait-based collection library that
supports statically checked immutability [Odersky and Moors
2009] (which Java does not support). The implementation
design of expandable collections in Scala is similar to Pharo.

However, the Scala collection suffers from the very same
problems we have identified in Pharo. For example, the class
ArrayBuffer which is the equivalent of Java’s ArrayList cre-
ates an empty array of a default size 16. The array creation
occurs in the ResizableArray superclass5. All classes deriv-
ing from ResizableArray face the problematic situation we
have identified in this article.

Ruby. Ruby provides a complete implementation of array,
the most used expandable collection in Ruby, in the virtual
machine. All the arithmetic operations, copy, element addi-
tion and removing are carried out by the virtual machine.
Ruby associates to each empty collection an array of size

5http://bit.ly/ResizableArrayScala

9

http://bit.ly/ResizableArrayScala

16, thus recreating the problematic situations identified in
Pharo.

Applicability of our results. In our experiment we have
identified a significant amount of empty collections. Sim-
ilar behavior has been found in other situations. For example,
when conducting the case studies in Java with Chameleon [Shacham
et al. 2009], a high proportion of empty collections have also
been identified.

The collection frameworks of Java, C#, Scala, and Ruby
largely behave similarly to Pharo. We therefore expect our
improvement on the Pharo library to have a positive and
significant impact on these collection libraries. As future
work, we plan to verify our assumption by modifying the
standard library and running established benchmarks: Da-
Capo [Blackburn et al. 2006] and SPECjbb are commonly
used benchmarks. Note it has been shown that SPECjbb is
a more demonstrative collection user than DaCapo [Potanin
et al. 2013].

9. RELATED WORK
Patterns of memory inefficiency. A set of recurrent
memory patterns have been identified by Chis et al. [Chis
et al. 2011]. Overheads in Java come from object headers,
null pointers, and collections. Three of their 11 patterns
(P1, P3, P4) are about unused portions internal arrays of
collections. The model ContainerOrContained has been
proposed to detect occurrences of these patterns.

We have proposed the lazy internal array creation tech-
nique to efficiently address pattern P1 - empty collections.
Addressing pattern P3 - small collections is unfortunately
not easy. Our collection profiler identifies the provenance of
collections having an unnecessary large capacity. However
refactoring the base application to properly set the capacity
does not result in a significant impact (only a reduction of
0.13% of allocated bytes has been measured). As future
work, we plan to verify whether some patterns, depending
on the behavior of the application, may be identified (e.g., a
method that always produces collections of a same size).

Storage strategies. Use of primitive types in Python may
trigger a large number of boxing and unboxing operations.
Storage strategies [Bolz et al. 2013] significantly reduces
the memory footprint of homogeneous collections. Each
collection has a storage strategy that is dynamically chosen
upon element additions. Homogeneous collections use a
dedicated storage to optimize the resources consumed by the
storage.

Storage strategies may be considered as a generalization
of the lazy internal array creation described above. Our
approach focuses on reducing the memory footprint of ex-
pandable collections, which is different, but complementary
to the approach of Bolz, Diekmann and Tratt which focuses
on the representation in memory of homogenous collections.

Discontiguous arrays. Traditional implementation of mem-
ory model uses a continuous storage. Associating a continu-
ous memory portion to a collection is known to be a source
of wasted space which leads to unpredictable performance
due to garbage collection pauses [Wilson et al. 1995]. Dis-
contiguous arrays is a technique that consists in dividing
arrays into indexed memory chunks [Joannou and Raman
2011, Sartor et al. 2010, Bacon et al. 2003, Chen et al. 2003].
Such techniques are particularly adequate for real-time and
embedded systems.

Implementing these techniques in an existing virtual ma-
chine usually comes at a heavy cost. In particular, the
garbage collector has to be aware of discontiguous arrays. A
garbage collector is usually a complex and highly optimized
piece of code, which makes it very delicate to modify. Bugs
that may be inadvertently introduced when modifying it may
result in severe and hard-to-trace crashes.

Our results show that a significant improvement may be
carried out without any low-level modification in the virtual
machine or in the executing platform. Many of our experi-
ments about memory profiling in Pharo have been carried
out having simultaneously multiple different versions of the
collection library. Nevertheless, research results about dis-
continuous arrays, in particular Z-rays [Sartor et al. 2010],
may be beneficial to expandable collections. In the future,
we plan to work on this.

Dynamic adaptation. Choosing the most appropriate col-
lection implementation is not simple. The two collections
ArrayList and HashSet are often chosen because their be-
havior is well known, which makes them popular. Improperly
chosen collection implementation may lead to unnecessary
resource consumption. Xu [Xu 2013] proposes an optimiza-
tion technique to dynamically adapt a collection into the
one that fits best according to its usage (e.g., replacing a
LinkedList with an ArrayList).

Xu’s approach is similar to the storage strategies mentioned
above, which makes it complementary to our approach.

Adaptive selection of collections. In the same line as
dynamic adaption, Shacham et al. [Shacham et al. 2009]
describe a profiler specific to collections which outputs a list
of appropriate collection implementation. The correction can
be either made automatically, or presented to the programmer
for correction. A small domain-specific language is described
to define rules to characterize use of collections.

Recycling collections. The idea of recycling some collec-
tions classes has been investigated in the past. For example,
functional languages create a new copy, at least in principle,
at each element addition or removal. Avoiding such copies
has been the topic of numerous research work [Kagedal and
Debray 1996, Mazur et al. 2001].

Recycling collections when possible is known to be effec-
tive [Xu 2012]. For example, Java Performance Tuning [Shi-
razi 2002], Chapter 4, Page 79, mentions “Most container
objects (e.g., Vectors, Hashtables) can be reused rather
than created and thrown away.” However, no evidence about
the gain is given. In the case of Pharo, recycling internal
arrays of expandable collections reduces the number of al-
located bytes by 9.4%. This book chapter also argues that
recycling collections is effective in a multi-threaded setting.
It supports the idea that programmers should make their
collections reusable, whenever is possible. Our work embeds
this notion of recycling arrays within the collection library
itself.

The notion of unnecessary or redundant computation
within loops has been the topic of some recent work [Mitchell
and Sevitsky 2007, Bhattacharya et al. 2011, Xu et al. 2012,
Nistor et al. 2013]. An efficient model for reusing objects at
the loop iteration level are provided. For example, reusing
collections within a loop leads to a “20-40% reduction in
object churn” and “the execution time improvements range
between 6-20%.” Object churn refers to the excessive genera-
tion of temporary objects. Our approach essentially embeds

10

the improvement within the collection library, which has the
advantage to not impact the programmer’s habits. However,
our performance improvements are smaller.

Adaptive collection. The Clojure programming language6

offers persistent data structures. Such data structures have
their implementation based on the usage of the internal array
storage. For example, a PersistentArrayMap is promoted to
a PersistentHashMap once the collection exceeds 16 entries.

10. CONCLUSION AND FUTURE WORK
Expandable collections are an important piece of the run-

time. Although intensively used, expandable collections are
a potential source of wasted memory space and CPU con-
sumption.

Improving the performance of expandable collections went
through three different steps, as described in Section 5, Sec-
tion 6 and Section 7. We have defined a total of 32 execu-
tions of 17 different applications, which generate over 6M
of expandable collections. The execution blueprint of these
collections obtained with the standard collection library is
given in Table 3. We have developed OptimizedCollection, a
collection library that supports lazy array creation and array
recycling. The execution profile of the benchmark is given
in Table 5. The positive effect of our collection is given by
contrasting Table 5 against Table 3. OptimizedCollection
has:

• reduced the number of created intermediary internal
array storage by (6,205,920 − 1,798,380) / 6,205,920 =
71.02% (column NAC)

• reduced the number of allocated bytes by (253,288,572
− 78,336,068) / 253,288,572 = 69.07% (column NAB)

• reduced the number of unused bytes by (228,171,448
− 61,383,684) / 228,171,448 = 73.09% (column NUB)

Recycling arrays incurs a time penalty during the execution.
Our benchmark runs 3% faster for all but one performance
benchmark.

Some future directions of this work are to consider other
incrementation strategies than doubling the size of the inter-
nal array. It is likely that gain may be gained by considering
an incrementation strategy per collection creation site.

We have carefully reviewed the collection implementations
of Java (JDK6, JDK7, JDK8), C#, Ruby and Scala. These
implementations suffer from the same symptoms found in
Pharo. We hope this article will contribute in improving
collection libraries across programming languages and will
serve as a guideline for future collection designers.

Acknowledgments. We thank Oscar Nierstrasz, Lukas
Renggli, Eric Tanter, and Renato Cerro for their comments
on an early draft of this article. We also thank Aleksandar
Prokopec for his help with Scala collections.

11. REFERENCES
[Bacon et al. 2003] David F. Bacon, Perry Cheng, and V. T.

Rajan. 2003. A Real-time Garbage Collector with Low
Overhead and Consistent Utilization. In Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’03).

6http://clojure.org

ACM, New York, NY, USA, 285–298. DOI:
http://dx.doi.org/10.1145/604131.604155

[Bhattacharya et al. 2011] Suparna Bhattacharya,
Mangala Gowri Nanda, K. Gopinath, and Manish
Gupta. 2011. Reuse, recycle to de-bloat software. In
Proceedings of the 25th European conference on
Object-oriented programming (ECOOP’11).
Springer-Verlag, Berlin, Heidelberg, 408–432. http:
//dl.acm.org/citation.cfm?id=2032497.2032524

[Blackburn et al. 2006] Stephen M. Blackburn, Robin
Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović,
Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo benchmarks: java
benchmarking development and analysis. In
Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications (OOPSLA ’06). ACM, New
York, NY, USA, 169–190. DOI:
http://dx.doi.org/10.1145/1167473.1167488

[Bolz et al. 2013] Carl Friedrich Bolz, Lukas Diekmann, and
Laurence Tratt. 2013. Storage Strategies for Collections
in Dynamically Typed Languages. In Proceedings of the
2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages &
Applications (OOPSLA ’13). ACM, New York, NY,
USA, 167–182. DOI:
http://dx.doi.org/10.1145/2509136.2509531

[Cassou et al. 2009] Damien Cassou, Stéphane Ducasse,
and Roel Wuyts. 2009. Traits at Work: the design of a
new trait-based stream library. Journal of Computer
Languages, Systems and Structures 35, 1 (2009), 2–20.
DOI:http://dx.doi.org/10.1016/j.cl.2008.05.004

[Chen et al. 2003] G. Chen, M. Kandemir, N.
Vijaykrishnan, M. J. Irwin, B. Mathiske, and M.
Wolczko. 2003. Heap Compression for
Memory-constrained Java Environments. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on
Object-oriented Programing, Systems, Languages, and
Applications (OOPSLA ’03). ACM, New York, NY,
USA, 282–301. DOI:
http://dx.doi.org/10.1145/949305.949330

[Chis et al. 2011] Adriana E. Chis, Nick Mitchell, Edith
Schonberg, Gary Sevitsky, Patrick O’Sullivan, Trevor
Parsons, and John Murphy. 2011. Patterns of Memory
Inefficiency. In Proceedings of the 25th European
Conference on Object-oriented Programming
(ECOOP’11). Springer-Verlag, Berlin, Heidelberg,
383–407. http:
//dl.acm.org/citation.cfm?id=2032497.2032523

[Cook 2009] William R. Cook. 2009. On understanding
data abstraction, revisited. SIGPLAN Not. 44, 10
(2009), 557–572. DOI:
http://dx.doi.org/10.1145/1639949.1640133

[Ducasse et al. 2009] Stéphane Ducasse, Damien Pollet,
Alexandre Bergel, and Damien Cassou. 2009. Reusing
and Composing Tests with Traits. In Tools’09:
Proceedings of the 47th International Conference on
Objects, Models, Components, Patterns. Zurich,

11

http://clojure.org
http://dx.doi.org/10.1145/604131.604155
http://dl.acm.org/citation.cfm?id=2032497.2032524
http://dl.acm.org/citation.cfm?id=2032497.2032524
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/2509136.2509531
http://dx.doi.org/10.1016/j.cl.2008.05.004
http://dx.doi.org/10.1145/949305.949330
http://dl.acm.org/citation.cfm?id=2032497.2032523
http://dl.acm.org/citation.cfm?id=2032497.2032523
http://dx.doi.org/10.1145/1639949.1640133

Switzerland, 252–271.
http://hal.archives-ouvertes.fr/docs/00/40/35/

68/PDF/Reusing_Composing.pdf

[Georges et al. 2007] Andy Georges, Dries Buytaert, and
Lieven Eeckhout. 2007. Statistically rigorous java
performance evaluation. In Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented
programming systems and applications (OOPSLA ’07).
ACM, New York, NY, USA, 57–76. DOI:
http://dx.doi.org/10.1145/1297027.1297033

[Gil and Shimron 2011] Joseph (Yossi) Gil and Yuval
Shimron. 2011. Smaller Footprint for Java Collections.
In Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems
Languages and Applications Companion (SPLASH ’11).
ACM, New York, NY, USA, 191–192. DOI:
http://dx.doi.org/10.1145/2048147.2048201

[Joannou and Raman 2011] Stelios Joannou and Rajeev
Raman. 2011. An Empirical Evaluation of Extendible
Arrays. In Proceedings of the 10th International
Conference on Experimental Algorithms (SEA’11).
Springer-Verlag, Berlin, Heidelberg, 447–458. http:
//dl.acm.org/citation.cfm?id=2008623.2008663

[Kagedal and Debray 1996] Andreas Kagedal and Saumya
Debray. 1996. A Practical Approach to Structure Reuse
of Arrays in Single AssignmentLanguages. Technical
Report. Tucson, AZ, USA.

[Kalibera and Jones 2013] Tomas Kalibera and Richard
Jones. 2013. Rigorous Benchmarking in Reasonable
Time. In Proceedings of the 2013 International
Symposium on Memory Management (ISMM ’13).
ACM, New York, NY, USA, 63–74. DOI:
http://dx.doi.org/10.1145/2464157.2464160

[Mazur et al. 2001] Nancy Mazur, Peter Ross, Gerda
Janssens, and Maurice Bruynooghe. 2001. Practical
Aspects for a Working Compile Time Garbage
Collection System for Mercury. In Logic Programming,
Philippe Codognet (Ed.). Lecture Notes in Computer
Science, Vol. 2237. Springer Berlin Heidelberg, 105–119.
DOI:http://dx.doi.org/10.1007/3-540-45635-X_15

[Mitchell and Sevitsky 2007] Nick Mitchell and Gary
Sevitsky. 2007. The Causes of Bloat, the Limits of
Health. In Proceedings of the 22Nd Annual ACM
SIGPLAN Conference on Object-oriented Programming
Systems and Applications (OOPSLA ’07). ACM, New
York, NY, USA, 245–260. DOI:
http://dx.doi.org/10.1145/1297027.1297046

[Mytkowicz et al. 2009] Todd Mytkowicz, Amer Diwan,
Matthias Hauswirth, and Peter F. Sweeney. 2009.
Producing wrong data without doing anything
obviously wrong!. In Proceeding of the 14th
international conference on Architectural support for
programming languages and operating systems
(ASPLOS ’09). ACM, New York, NY, USA, 265–276.
DOI:http://dx.doi.org/10.1145/1508244.1508275

[Nistor et al. 2013] Adrian Nistor, Linhai Song, Darko
Marinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-access
Patterns. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE ’13). IEEE
Press, Piscataway, NJ, USA, 562–571. http:

//dl.acm.org/citation.cfm?id=2486788.2486862

[Odersky and Moors 2009] Martin Odersky and Adriaan
Moors. 2009. Fighting bit Rot with Types (Experience
Report: Scala Collections). In IARCS Annual
Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2009) (Leibniz
International Proceedings in Informatics (LIPIcs)),
Ravi Kannan and K Narayan Kumar (Eds.), Vol. 4.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 427–451. DOI:http:
//dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338

[Potanin et al. 2013] Alex Potanin, Monique Damitio, and
James Noble. 2013. Are Your Incoming Aliases Really
Necessary? Counting the Cost of Object Ownership. In
Proceedings of the 2013 International Conference on
Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 742–751. http:
//dl.acm.org/citation.cfm?id=2486788.2486886

[Sartor et al. 2010] Jennifer B. Sartor, Stephen M.
Blackburn, Daniel Frampton, Martin Hirzel, and
Kathryn S. McKinley. 2010. Z-rays: Divide Arrays and
Conquer Speed and Flexibility. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10).
ACM, New York, NY, USA, 471–482. DOI:
http://dx.doi.org/10.1145/1806596.1806649

[Shacham et al. 2009] Ohad Shacham, Martin Vechev, and
Eran Yahav. 2009. Chameleon: Adaptive Selection of
Collections. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’09). ACM, New York, NY,
USA, 408–418. DOI:
http://dx.doi.org/10.1145/1542476.1542522

[Shirazi 2002] Jack Shirazi. 2002. Java Performance Tuning
(2nd ed.). O’Reilly & Associates, Inc., Sebastopol, CA,
USA.

[Wilson et al. 1995] PaulR. Wilson, MarkS. Johnstone,
Michael Neely, and David Boles. 1995. Dynamic
storage allocation: A survey and critical review. In
Memory Management, HenryG. Baler (Ed.). Lecture
Notes in Computer Science, Vol. 986. Springer Berlin
Heidelberg, 1–116. DOI:
http://dx.doi.org/10.1007/3-540-60368-9_19

[Wilson and Kesselman 2000] Steve Wilson and Jeff
Kesselman. 2000. Java Platform Performance. Prentice
Hall PTR.
http://java.sun.com/docs/books/performance

[Wolfmaier et al. 2010] Klaus Wolfmaier, Rudolf Ramler,
and Heinz Dobler. 2010. Issues in Testing Collection
Class Libraries. In Proceedings of the 1st Workshop on
Testing Object-Oriented Systems (ETOOS ’10). ACM,
New York, NY, USA, Article 4, 8 pages. DOI:
http://dx.doi.org/10.1145/1890692.1890696

[Xu 2012] Guoqing Xu. 2012. Finding Reusable Data
Structures. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’12). ACM,
New York, NY, USA, 1017–1034. DOI:
http://dx.doi.org/10.1145/2384616.2384690

[Xu 2013] Guoqing Xu. 2013. CoCo: Sound and Adaptive
Replacement of Java Collections. In Proceedings of the
27th European Conference on Object-Oriented

12

http://hal.archives-ouvertes.fr/docs/00/40/35/68/PDF/Reusing_Composing.pdf
http://hal.archives-ouvertes.fr/docs/00/40/35/68/PDF/Reusing_Composing.pdf
http://dx.doi.org/10.1145/1297027.1297033
http://dx.doi.org/10.1145/2048147.2048201
http://dl.acm.org/citation.cfm?id=2008623.2008663
http://dl.acm.org/citation.cfm?id=2008623.2008663
http://dx.doi.org/10.1145/2464157.2464160
http://dx.doi.org/10.1007/3-540-45635-X_15
http://dx.doi.org/10.1145/1297027.1297046
http://dx.doi.org/10.1145/1508244.1508275
http://dl.acm.org/citation.cfm?id=2486788.2486862
http://dl.acm.org/citation.cfm?id=2486788.2486862
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2338
http://dl.acm.org/citation.cfm?id=2486788.2486886
http://dl.acm.org/citation.cfm?id=2486788.2486886
http://dx.doi.org/10.1145/1806596.1806649
http://dx.doi.org/10.1145/1542476.1542522
http://dx.doi.org/10.1007/3-540-60368-9_19
http://java.sun.com/docs/books/performance
http://dx.doi.org/10.1145/1890692.1890696
http://dx.doi.org/10.1145/2384616.2384690

Programming (ECOOP’13). Springer-Verlag, Berlin,
Heidelberg, 1–26. DOI:
http://dx.doi.org/10.1007/978-3-642-39038-8_1

[Xu et al. 2012] Guoqing Xu, Dacong Yan, and Atanas
Rountev. 2012. Static Detection of Loop-invariant Data
Structures. In Proceedings of the 26th European
Conference on Object-Oriented Programming
(ECOOP’12). Springer-Verlag, Berlin, Heidelberg,
738–763. DOI:
http://dx.doi.org/10.1007/978-3-642-31057-7_32

APPENDIX
A. APPLICATION BENCHMARK DETAIL

& MEASUREMENT

13

http://dx.doi.org/10.1007/978-3-642-39038-8_1
http://dx.doi.org/10.1007/978-3-642-31057-7_32

bench. NC NNEC NEC NCE NCB
bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200

bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000

bPP1 90,600 46,200(50%) 44,400(49%) 5,600 436,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,860 6,475,120
bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,530 1,583(62%) 947(37%) 117 15,608
bR3 79,456 53,259(67%) 26,197(32%) 4,809 686,196
total 6,129,207 1,637,669(26%) 4,491,538(73%) 980,792 46,953,084

.

.
bench. NAC NOSM NSM NAB NUB
bAST1 210,000 38,000(18%) 38,000(18%) 6,752,000 6,468,000
bAST2 183,000 41,000(22%) 41,000(22%) 5,928,000 5,580,000
bAST3 431,220 87,570(20%) 87,570(20%) 13,795,440 13,212,720

bN1 150 0(0%) 0(0%) 3,000 3,000
bN2 240 120(66%) 120(66%) 22,440 7,680
bN3 300 180(75%) 180(75%) 22,680 7,560

bPP1 96,200 46,200(50%) 46,200(50%) 4,214,400 3,033,600
bPP2 84,600 44,800(57%) 44,800(57%) 3,790,400 2,571,200
bPP3 599,570 398,420(72%) 398,420(72%) 29,103,720 17,192,120
bReg1 1,000 100(10%) 100(10%) 34,400 33,600
bReg2 2,162,860 10(0%) 10(0%) 86,513,920 84,799,800
bReg3 1,950,010 10(0%) 10(0%) 78,001,720 76,093,720
bR1 400,055 0(0%) 3(0%) 17,263,480 13,023,236
bR2 2,642 289(11%) 299(11%) 141,056 99,404
bR3 84,073 13,365(16%) 13,454(16%) 7,701,916 6,045,808
total 6,205,920 670,064(10%) 670,166(10%) 253,288,572 228,171,448

Table 3: Original benchmark (baseline for all the other measurements)

14

bench. NC NNEC NEC NCE NCB
bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200

bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000

bPP1 90,600 46,200(50%) 44,400(49%) 5,600 436,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,860 6,475,120
bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,422 1,583(65%) 839(34%) 117 15,608
bR3 78,145 53,259(68%) 24,886(31%) 4,809 686,196
total 6,127,788 1,637,669(26%) 4,490,119(73%) 980,792 46,953,084

.

.
bench. NAC NOSM NSM NAB NUB
bAST1 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 53,000 41,000(22%) 41,000(22%) 1,016,000 668,000
bAST3 113,040 87,570(20%) 87,570(20%) 2,389,680 1,806,960

bN1 0 0(0%) 0(0%) 0 0
bN2 210 120(66%) 120(66%) 21,840 7,080
bN3 300 180(75%) 180(75%) 22,680 7,560

bPP1 78,000 46,200(50%) 46,200(50%) 3,490,400 2,309,600
bPP2 70,200 44,800(57%) 44,800(57%) 3,218,400 1,999,200
bPP3 543,770 398,420(72%) 398,420(72%) 26,952,320 15,040,720
bReg1 200 100(10%) 100(10%) 7,200 6,400
bReg2 428,000 10(0%) 10(0%) 17,120,000 15,405,880
bReg3 476,070 10(0%) 10(0%) 19,044,600 17,136,600
bR1 52 0(0%) 3(0%) 5,263,360 1,223,116
bR2 1,698 289(11%) 299(12%) 109,356 67,704
bR3 63,400 13,365(17%) 13,454(17%) 7,034,296 5,378,188
total 1,874,940 670,064(10%) 670,166(10%) 86,510,132 61,393,008

Table 4: Lazy internal array creation

15

bench. NC NNEC NEC NCE NCB
bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200

bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000

bPP1 91,000 46,400(50%) 44,600(49%) 5,600 437,600
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480
bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,422 1,583(65%) 839(34%) 117 15,608
bR3 78,145 53,259(68%) 24,886(31%) 4,872 699,036
total 6,128,188 1,637,869(26%) 4,490,319(73%) 980,165 46,941,124

.

.
bench. NAC NOSM NSM NAB NUB
bAST1 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 110,370 87,570(20%) 87,570(20%) 2,361,480 1,806,960

bN1 0 0(0%) 0(0%) 0 0
bN2 153 120(66%) 120(66%) 13,400 7,080
bN3 243 180(75%) 180(75%) 14,240 7,560

bPP1 72,603 46,400(50%) 46,400(50%) 3,058,196 2,312,800
bPP2 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560
bReg1 200 100(10%) 100(10%) 7,200 6,400
bReg2 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 476,011 10(0%) 10(0%) 19,042,492 17,136,640
bR1 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 1,597 289(11%) 299(12%) 94,656 67,712
bR3 58,872 13,365(17%) 13,454(17%) 6,375,776 5,390,776
total 1,798,578 670,264(10%) 670,366(10%) 78,373,588 61,420,484

Table 5: Lazy internal array creation + reuse of array

16

bench. NC NNEC NEC NCE NCB
bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200

bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000

bPP1 90,600 46,200(50%) 44,400(49%) 5,600 437,600
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480
bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,422 1,583(65%) 839(34%) 117 15,608
bR3 78,145 53,259(68%) 24,886(31%) 4,872 699,036
total 6,127,788 1,637,669(26%) 4,490,119(73%) 980,165 46,941,124

.

.
bench. NAC NOSM NSM NAB NUB
bAST1 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 110,370 87,570(20%) 87,570(20%) 2,329,080 1,774,560

bN1 0 0(0%) 0(0%) 0 0
bN2 154 120(66%) 120(66%) 11,280 4,920
bN3 244 180(75%) 180(75%) 12,120 5,400

bPP1 72,403 46,200(50%) 46,200(50%) 3,057,396 2,312,800
bPP2 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560
bReg1 200 100(10%) 100(10%) 7,200 6,400
bReg2 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 476,011 10(0%) 10(0%) 19,042,492 17,136,640
bR1 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 1,597 289(11%) 299(12%) 94,616 67,672
bR3 58,872 13,365(17%) 13,454(17%) 6,375,736 5,390,736
total 1,798,380 670,064(10%) 670,166(10%) 78,336,068 61,383,684

Table 6: Lazy internal array creation + reuse of array + code refactoring

17

	Introduction
	Pharo's Expandable Collections
	Benchmarking and Metrics
	Benchmark descriptions
	Metrics about the collection library
	Computing the metrics

	Use of Expandable Collections in Pharo applications
	Dynamic analysis
	Reducing the overhead incurred by collection expansions

	Lazy Internal Array Creation
	Creating the array only when necessary
	Lazy creation on the benchmark

	Recycling Internal Arrays
	Recycling arrays on the benchmark
	Variation in time execution

	Setting Initial Capacities
	Other programming languages
	Related Work
	Conclusion and Future Work
	References
	Application Benchmark Detail & Measurement

