Controlled Experiment to Assess a Test-Coverage

1

Visualization: Lesson Learnt

— Experience Report, work in progress —

Alexandre Bergel!, Vanessa Pena-Araya®, Tobias Kuhn?

'PLEIAD Lab, Department of Computer Science (DCC),
University of Chile
?Department of Humanities, Social and Political Sciences,
ETH Zurich
http://bergel.eu
vpena@dcc.uchile.cl
kuhntobias@gmail.com

June 29, 2015

Abstract

Evaluating a software visualization is a difficult and error-prone activity.
In this short paper, we report our experience when conducting a controlled
experiment to evaluate test blueprint, a visualization to assess the test
coverage. Our experiment went through two iterations. The first iteration
was unfortunately inconclusive, due to some decisions we took that we are
now considering as mistakes. After revising our experiment, we obtained
exploitable results, which are also matching our intuition.

Visually Assessing Test Coverage

Motivation. Test coverage is about assessing the relevance of unit tests against
the tested application. It is widely acknowledged that software with a good
test coverage is more robust against unanticipated execution, thus lowering
the maintenance cost. However, ensuring good quality coverage is challenging,
especially since most of the available test coverage tools do not discriminate
between software components that require strong coverage from the components
that require less attention from the unit tests.

Visualization. Test blueprint is an innovative visualization for test coverage [1].
It employs an effective and intuitive graphical representation to visually assess
the quality of the coverage. A combination of appropriate metrics and relations

http://bergel.eu
vpena@dcc.uchile.cl
kuhntobias@gmail.com

C1 moo
0 Bf%cmm

]

C2

C ﬁ 0 %pa o 2% o9l p °

1] oo daoon® |:||:||:|[|[| ol [I 1]

i
DD oo = =]

0= 1°0 DH il
L

oae
[ll:ll:l

C3

Legend for methods (inner boxes)

__

calling methods
<

complexityl # executions

<— invocation on self

red = not executed
blue = abstract

’
|
|
|
I
I
|
|
|
|
1
1
|
|
|
|
|
|
|
|
1
1
|
\

Figure 1: Test blueprint.

visually shape methods and classes, which indicates to the programmer whether
more effort on testing is required.

Encapsulating boxes represents classes (e.g., c1, ¢2). Inheritance is indicated
with an edge between classes. Subclasses are below their superclass (c1 is the
superclass of ¢2). Inner boxes represent methods. c3 defines six methods. Each
method is represented as a small box, visually defined with five dimensions:

e height is the cyclomatic complexity of the method [2]. As the method may
take different paths at execution time, the higher the box will be.

e width is the number of different methods that call the method when
running the tests. A wide method (£) means the method has been executed
by many different methods. A thin method means the method has been
executed a few times.

e gray intensity reflects the number of times the method has been executed.
A dark method has been executed many times. A light-toned method has
been executed a few times.

e a red border color (light gray on a B&W printout) means the method has
not been executed. A blue border indicates abstract methods. A green
border indicates that the method is a test method, defined in a unit test.
Note that a unit test may contain methods that are not test methods;
utility methods for example.

e the call-flow on the self variable is indicated with edges between methods.
This happens if the body of a method methodi contains the expression
self method2, meaning that the message method2 is sent to self. Note that
we are focusing on the call-flow instead of the control-flow. The call-flow
is scoped to the class. Call-flow is statically determined from the abstract
syntax tree of the method.

Evaluating test blueprint. Measuring the impact of the test blueprint on
developers has been the topic of a long effort. The remaining of the paper
describes the two attempts we carried out. The two hypotheses we are interested
in are:

H1 - Test blueprint helps identifying the method to test in order to maximize
the coverage increase.

H2 - Test blueprint helps assessing the difficulty to test a class.

2 First Attempt

Controlled experiment design. As a first attempt to evaluate test blueprint,
we conducted a controlled experimented, designed as follows:

e As a base line, we took the visualization produced by EclEmma', which
we consider as a standard test coverage tool for Java. Figure 2 illustrates
this visualization.

e Instead of comparing the tools themselves, we solely focused on the vi-
sualization. Evaluating the tools would require more effort, especially
since EclEmma has been developed and maintained for a long time period.
In addition, evaluating the tools would introduce biases related to the
programming language (Java vs Pharo) and to the IDE (Eclipse vs the
Pharo IDE). Test blueprint is implemented in the Pharo programming
language?.

Thttp://wuw.eclemma.org
’http://pharo.org

http://www.eclemma.org
http://pharo.org

The Pharo open source community has multiple times expressed the need of
a robust test coverage tool. Since we strongly felt test blueprint was aiming
at addressing this need, we decided to directly survey the community. For
that purpose, we designated a small web questionnaire for the community
members to fill in.

Participants were asked a number of questions on two sets of classes,
one shown with test blueprint and the other with EclEmma. Questions
were divided in two categories: (i) classes characterization regarding their
easiness to test and (ii) methods having the highest potential to increase the
coverage. These two questions are directly related to the two hypotheses.
Category (i) contained 8 questions and category (ii) has 6 questions.

Results. The experiment has been carried out with care. Unfortunately, the
experiment was not concluding. In particular, no tendencies could be drawn
and the hypotheses have been left unverified. We believe this is the result of a
number of suboptimal decisions we took:

3

Classes that were given to the participants to assess were small. This was
made on purpose to avoid measurement bias that would stem from large
windows (e.g., participants would need to scroll through the visualization).
It is known that visualization helps facing scalability (especially when
compared with textual listing). However we did not exploit this.

Too many questions where asked to the participants. These questions
were also imprecise and not directly linked to the hypothesis we wished to
evaluate.

Participants have a natural tendency to be resistant to proposals to improve
their environment. Although we were not able to measure it, we had a
clear impression that the participants’ answers were indicating that they
wish no changes.

Second Attempt

As a second attempt, we improved the experiment design as follow:

12 participants have been selected from the University of Chile and from a
local company that is known to use unit tests in their production.

participations were surveyed on paper and not via a website.
Only two questions were asked to each participant.

We have removed some variables in our design. In particular we do not
make a distinction between small and large classes and between the inner
structure of classes. The reason for this is that 12 participants was not
enough to have a representative data set.

This revised experiment provided better results. The controlled experiment
indicates that the hypothesis H1 is not verified, despite a better average score of
test blueprint against EclEmma. The hypothesis H2 is verified: test blueprint
significantly outperforms coverage report listing to indicate the difficulty to test
a class.

4 Conclusion

This short paper describes the two iterations we have carried out on evaluating
a test coverage visualization. We hope the experience we are reporting will be
beneficial to other researchers.

References

[1] A. Bergel, V. P. na, Increasing test coverage with hapao, Science of Computer
Programming 79 (1) (2012) 86-100. doi:10.1016/j.scico.2012.04.006.

[2] T. J. McCabe, A measure of complexity, IEEE Transactions on Software
Engineering 2 (4) (1976) 308-320.

[@k Coverage & LY MR X LN HIER-
TestAllPackages (Feb 13, 2012 9:52:22 AM)
Element A Coverage Covered Lines Missed Lines Total Lines
¥ =% commons-collections = 80.7% 11092 2646 13738 +
Y@ src = 80.7% 11092 2646 13738
» 1 org.apache.commons.collections = 77.1% 3991 1188 5179
» f1 org.apache.commons.collections.bag = 66.9% 234 116 350
¥ f org.apache.commons.collections.bidimap == 91.2% 964 93 1057
¥ [J) AbstractBidiMapDecorator.java = 85.7% 6 i 7
v & AbstractBidiMapDecorator = 85.7% 6 1 7
€ AbstractBidiMapDecorator(BidiMap) == 100.0 % 2 0 2
getBidiMap() = 100.0% 1 0 1
@ getKey(Object) = 100.0 % 1 0 1
@ inverseBidiMap() - 0.0 % 0 1 1y

Figure 2: EclEmma’s test coverage output

http://dx.doi.org/10.1016/j.scico.2012.04.006

	Visually Assessing Test Coverage
	First Attempt
	Second Attempt
	Conclusion

