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Abstract—To obtain an accurate understanding of program
behavior, developers use a set of tools and techniques such as
logging outputs, debuggers, profilers, and visualizations. These
support an in-depth analysis of the program behavior, each ap-
proach focusing on a different aspect. What is missing, however,
is an approach to get an overview of a program execution. As
a first step to fill this gap, this paper presents an approach to
generate Method Execution Reports. Each report summarizes
the execution of a selected method for a specific execution
of the program using natural-language text and embedded
visualizations. A report provides an overview of the dynamic calls
and time consumption related to the selected method. We present
a framework to generate these reports and discuss the specific
instantiation and phrasing we have chosen. Our results comprise
feedback from developers discussing the understandability and
usefulness of our approach and a task-based comparison to state-
of-the-art solutions.

I. INTRODUCTION

Programmers frequently need to understand the runtime
behavior of an unknown or partly known program. Docu-
mentation and expressive identifiers support the programmer
developing a basic understanding of the code, but do not
provide information about a specific execution. In contrast,
logging, breakpoint debugging, profilers, and visualization
facilitate the programmer to learn about an execution, but come
along with a detailed and often time-consuming analysis.

The Method Execution Reports we introduce in this work
provide a lightweight alternative that can be generated for a
specific program execution. Such reports are generic and de-
scribe different aspects of the runtime behavior of the analyzed
system. The reports are automatically created from data. In
contrast to visualizations, their primary mean of communi-
cation is text, not diagrams. Visualizations and interactively
explorable details are only added if larger sets of numbers or
longer lists of entities need to be communicated. In this way,
the ability of visualization to make larger quantities of data
readable complements the flexibility and rich vocabulary of
textual descriptions.

Figure 1 provides an example of a Method Execution Report
for paintEntries, the main drawing method of a Java
program to generate a treemap of a file directory [1] (i.e., a
space-filling hierarchy visualization using nested boxes). The
report is structured in three sections and lists the code of the
method below. In the summary, we learn about basic data:
whether the method was called recursively, about the number
of incoming and outgoing calls, and how long the summed

Fig. 1. Execution report for the method TreeMapPanel.paintEntries
of a program that draws a treemap visualization for a file hierarchy encoding
file sizes in the size of the nested boxes.
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executions of the method took. The Method Calls section
details the description of the call structure, such as listing the
most important callers and callees as well as describing the
recursion in more detail. The final section provides further
information on runtime consumption. Small visualizations,
which the reader can explore interactively, augment parts of
the statements. Other reports follow the same structure, but
their content—depending on the studied method and program
execution—varies significantly (cf. Figure 1 and Figure 5).
Interactive versions of the reports as well as executables and
the source code for generating new reports are part of the
online supplemental material1 for this paper.

This paper makes the following main contributions:

• We designed and implemented a technique to generate
text based on decision graphs to incorporate interactive
and visual indicators.

• We apply the technique to describe method execution
behavior with respect to calls and execution time.

First, we report related work and approaches that provide
a basis for our approach (Section II). We then describe a
general framework to generate execution reports (Section III).
As an instantiation of the framework for Java methods, we
introduce Method Execution Reports (Section IV). We evaluate
the resulting reports in a user study and report feedback of soft-
ware developers (Section V). Moreover, a task-based analysis
contrasts our approach to existing solutions (Section VI).

II. RELATED WORK

Our approach is a specific documentation generation tech-
nique related to code summarization. Previous techniques
use automatically derived keywords and generated phrases to
describe a software artifact. A simple summarization approach
is to extract meaningful keywords as labels from the com-
ments and identifier names contained in the source code [2],
[3]. Other approaches go a step further and create natural-
language-text summaries from existing text fragments, for
instance, available in bug reports [4]. In contrast, we cannot
rely on existing phrases because there usually does not exist
a written documentation of specific runs of the system.

However, natural-language text can be also generated with-
out considering existing phrases from the source code structure
or software models. Several approaches produce descriptions
of object-oriented class models as a basis for documenta-
tion [5], [6], [7], [8]. Moreno et al. [9] create summarizations
of classes from source code. Sridhara et al. [10] uses identifiers
present in source code statements to produce descriptions
of software methods, McBurney and McMillan [11] add
context to such descriptions by explicitly considering call
dependencies. Further approaches exist to produce descrip-
tions of crosscutting concerns [4], commit messages [12], or
release notes [13] from software changes. In contrast to these
approaches, we generate a description of dynamic runtime
behavior of software. Not only do call dependencies need to be

1https://fabian-beck.github.io/Method-Execution-Reports/

described, but the description is also required to quantify these
dependencies and to add general performance information.

In general, natural language generation [14] is a field
that investigates the automatic production of natural-language
texts. In addition to simple templating, called mail merge,
this field provides sophisticated techniques to compose text
from data, constructing grammatically correct sentences. The
natural language generation approach presented in this paper
has a mid-level of complexity, being more advanced than
filling in variables in a text template, but not using advanced
grammar-based text generation methods [14]. We further in-
tegrate simple visualizations into the generated text. This can
be considered a generation of multi-modal documents [15]
and shares some similarity with the generation of text that
describes a visualization [16]. A tight, interactive integration
of text and graphics for generated multi-modal documents like
in our approach, however, has not been studied yet.

From a visualization perspective, the focus is on small
visualizations integrated into the text known as sparklines [17],
word-scale visualizations [18], or word-sized graphics [19]. In
software engineering applications, sparklines and similar small
graphics have been already integrated into IDE interfaces,
especially the code editor, to show software metrics [20],
dynamic call and performance information [21], [22], [23], bad
smells [24], numeric variable values [25], and feature location
search results [26]. While sparklines have become very popular
as part of spreadsheets and tables, the integration of sparklines
into natural-language text is not as common [19]. With regard
to text integration, Goffin et al. study placement options for
sparklines [27], [28] and the design space for these graphics
to enrich a text [18].

Our technique targets an improved understanding of run-
time behavior and shares this goal with debugging tools
and profilers. Standard interfaces for these tools are tree-
based variable exploration and call stack views. Alternative
debugging interfaces include systems like DDD [29], which
visually represents explorable data structures, or Whyline [30],
[31], which allows developers to ask why questions about
the program output. In addition to standard profiling tools,
performance information can be shown as an overlay of
the code or integrated into the code representation [32],
[21], [22]. External performance visualization provides an
overview of potential bottlenecks [33], [34] and performance
regressions [35]. Isaacs et al. [36] survey further performance
visualization approaches. To the best of our knowledge, a
natural language interface for dynamic software analysis data
does not exist yet.

III. EXECUTION REPORTING FRAMEWORK

The core of our approach is a technique to generate natural-
language texts. We add visual augmentations to the text to
provide details and allow users to further explore the data.
Finally, we integrate all parts into a system that records the
dynamic information during program execution and builds the
interactive reports as Web pages. This section introduces all



building blocks of the approach as a technical framework and
basis for later producing specific reports.

A. Text Generation

We use decision graphs and parameterized sentence tem-
plates to generate the natural-language text. Decision graphs
are inspired by well-known flowcharts [37], which consist of
decision and processing vertices. In terms of natural language
generation [14], this templating approach can be considered
as an advanced mail merge technique. In contrast to more
complex generation techniques like those discussed by Reiter
et al. [14], it does not require building a language and gram-
mar model. For our application, this mid-level of complexity
provides enough flexibility while, at the same time, it remains
easy to handle.

A report consists of different sections, each contributing
one or several paragraphs. The sequence of the paragraph is
fixed. Each decision graph describes a procedure to generate
the content of a paragraph. The result might be empty if
certain conditions hold (e.g., if a method is non-recursive, the
paragraph describing recursion stays empty). The graph is a
directed acyclic graph that consists of the following vertices
and edges:
• Start Vertex (1×)—The unique entry point of the graph;

a single outgoing edge connects a start vertex with the
next vertex.

• Text Vertex—A vertex that, when visited, adds a pa-
rameterized text fragment to the paragraph; a single edge
connects it with the next vertex.

• Decision Vertex—A conditional vertex with several out-
going edges, each representing a specific case; the edge
labels indicate the different discussions partitioning all
possible cases (i.e., comparable to a switch statement).

• Stop Vertex (1×)—The unique exit point of the graph;
the vertex does not have any outgoing edges.

Visiting the graph from the start to the stop vertex, the
text vertices produce a linear sequence of text. The decision
vertices and their contained conditions determine the path
through the graph. The path is deterministic because there
is always a unique branch selected in each decision. A path
always ends in a stop vertex because the graph is acyclic and
the stop vertex is the only vertex without outgoing edges. The
text template used in a text vertex usually range from a few
words to up to a full sentence. The parameters of the templates
are numbers (e.g., call frequencies or timing information)
and identifier names (e.g., method names of called or calling
methods). For changing quantities, some templates require
slight modifications of the grammar (e.g., switching between
singular and plural) or wording (e.g., adding “only”). Beside
this, the template is static—we reflect different cases that
require larger modification through different text vertices in
the decision graph.

Figure 2 provides the decision graph used to produce the
Summary section of the report. The diagram shows decision
vertices marked with rounded corners and text vertices high-
lighted with colors. Note that it is not feasible due to limited

Fig. 2. Decision graph describing the composition of the report summary
section. Nodes with rounded corner represent decision vertices. Colored nodes
represent text vertices (we use different colors to discern and visually reference
the nodes in Sections III and IV).

space to include the exact formulation of conditions and text
templates in the diagram, but we use descriptive identifiers
instead and provide all text templates as part of the online sup-
plemental material. For instance, the text template connected
with the Method Name vertex is “Method <method>”,
where “<method>” is a placeholder for the shortened method
name. A more complex template is assigned to the Recursion
Information vertex :

• If recursion depth = 1: “was recursively called with
recursion depth of only 1. It”

• else: “was recursively called with recursion depth of
<1+>. It”

In the recursive case, this phrase follows the text produced
by the Method Name vertex . Hence, the two parts are
concatenated, for instance, to produce “Method paintEntries
was recursively called with recursion depth of 11. It” (cf.
Figure 1). Please note that the examples ends with “It”, which
already bridges to the next sentence. This solution is appro-
priate here because, in the non-recursive case, the Recursion
Information vertex is skipped and the next vertex would
extend “Method <method>”. The specific path in the example
of Figure 1 followed through the decision graph (Figure 2) is:
Start → Method Name → Recursion Information →
Incoming Method Calls Information → Outgoing Method
Calls Information → Time Consumption → Stop.

B. Visual Augmentation

Together with the text, we produce and integrate visual
augmentation and interactive details that the user can retrieve
on demand. The goal of these augmentations is to provide
additional information that, if expressed verbally, would over-
load the text. We leverage the interactivity of Web documents
that allow blending in more information when hovering a
text phrase with the mouse. Moreover, we integrate word-



Fig. 3. Detailed list of 17 methods called by paintEntries as available
on demand in the report shown in Figure 1.

sized graphical representation to illustrate certain quantities.
In particular, our reports include the following augmentations:

• Shortened Names—We refer to other methods using the
method name, highlighted in gray to discern the identifier
from plain text (cf. Figure 1). A longer version of the
name also listing the class of the method is available on
demand in a tooltip dialog.

If the identifier name alone is not unique within the report
(e.g., several overloaded methods with the same name),
we add further details (class name, parameter types, return
type, etc.) until the name becomes unique.

• Fill Bars—For visualizing relative quantities (e.g., “x out
of y”), we add small bars that represent the quantity as a
fill level and provide a percentage value x/y (cf. Figure 1).
We highlight the text the graphic refers to in gray and
again provide a tooltip dialog on demand.

In the reports, we use different colors to discern different
reference quantities y for varying number x. For introduc-
ing a new reference quantity y, we first add a 100% bar
(y/y) in the respective color.

• Quantified Method Lists—When we need to list more
than two methods assigned with relative quantities (e.g.,
all callers with respective call frequencies), we only
summarize the total number of methods in the textual
report. On click, we provide further details in a pop-up
dialog as shown in Figure 3 (and a preview on mouse
hover). It contains a table providing the relative quantity
as a fill bar and a shortened but unique method name.

• Histograms—For representing distributions of quantities,
we further provide small bar chart histograms integrated
as sparklines into the text. Clicking one of these opens an
enlarged version of diagram in a pop-up dialog (Figure 4).

Fig. 4. Enlarged interactive histogram representing recursion depths of
paintEntries as available on demand in the report shown in Figure 1.

Currently, we use this visualization only for summarizing
depth levels of recursions, but the diagram easily gener-
alizes to other kinds of histograms or timelines.

The visual augmentation is designed to be visually simple,
intuitive, and easy to understand. We did not want to overload
the representation and keep the text readable. Interactions are
limited to retrieving details on demand, which is a common
interaction pattern that users are familiar with.

C. Implementation

Our implementation integrates text generation and visual
augmentation into a processing pipeline for generating reports
of Java methods. As a first step, we need to profile a Java
program at runtime to record all required information. We
focus the recording on a single method only and summarize
all executions of this method within a single run. The second
step is generating an interactive report from this information.

Profiling: Profiling describes the process of observing
and recording program behavior. Since we are interested in
specific information on the execution behavior of a single
method, we do not need to profile the whole system. We use
a simple instrumentation approach based on Javaassist and
instrument the bytecode at load-time. We implemented a Java
Agent to instrument an executable Java program. As input, the
agent requires the name of the method of interest for which the
report should be generated. Our agent records the following
events including timestamps and involved other methods:
• Method Start/End—The execution of the method of

interest starts/ends.
• Incoming Call—The method of interest is called by

another method.
• Outgoing Call—The method of interest calls another

method.
We store these events together with timestamps in an XML

file. This allows us to later calculate method execution times
for the method itself and callees of the method. For recursive
methods (both direct recursion as well as indirect recursion
through other methods), we take care to not count runtime
several times when aggregating the runtime information on



method level [22]. Depending on how often the method of in-
terest is executed, the runtime overhead produced by profiling
varies. Currently, both call structure and timing information
are recorded in a single run. To make the measurement
more reliable, two separate runs might be used in the future.
We chose a simple profiling approach, but the profiling can
be easily replaced by a more sophisticated solution without
affecting the general approach. We currently do not record
which threads executed the method; reflecting this information
in the generated reports would be a promising extension.

Generation of Interactive Report: We use Web technolo-
gies for the reports—HTML and CSS provide a simple basis to
structure and lay out the text, and JavaScripts adds interaction
and visual indicators. In particular, we use D3js to produce
interactive visualizations. The generator of the reports itself is
written in Java. It takes an XML file (and the source code of
the method of interest) as input and produces a static HTML
file linked with all required libraries and style files. Hence,
users can run this process locally and do not need to set
up a Web server to generate and view the reports. Currently,
the decision graphs and templates are manually transformed
to Java code. Future extensions of the implementation might
provide a user interface to visually specifying the graphs
and templates and generate the code automatically from the
graphical representation. Also, a closer integration of the
generation process and the presentation of the resulting report
into an IDE is a desirable extension.

IV. METHOD EXECUTION REPORTS

To produce reports, we instantiated our execution reporting
framework with specific decision graphs and text templates.
We started off composing the report with a description of
the call structure of a method because (i) method calls form
the basic communication between different components of a
system, (ii) calls—in particular incoming ones—are hard to
retrieve from the source code, and (iii) the dynamic call struc-
ture might significantly vary from the static calls retrieved with
a static analysis tool. We iterated the templates and examples
internally before we asked software developers for preliminary
feedback. Based on this, we improved the report and extended
it by a description of the runtime consumption. The final report
consists of three sections: a short summary, a description of
the method calls, and a description of time consumption. In the
following, we explain the content of the three paragraphs and
discuss the scenarios that need to be differentiated. While the
decision graph for the first paragraph is shown in Figure 2, the
online supplemental material provides details on all decision
graphs and text templates used.

A. Report Summary

The initial paragraph—like in a regular text—is intended
to give an introduction and summarize the most important
information. The complexity of the summary varies with the
complexity of the method’s execution to some extent. As
illustrated in the decision graph in Figure 2, the shortest path

Fig. 5. Execution report for the method KMeans.computeCentroids,
which computes the new centroid positions in each iteration of a k-means
clustering algorithm for clustering 50,000 2D points into k = 10 clusters.

to the Stop vertex is taken if there are no incoming calls—
the method is not executed. The respective text vertex just
describes that the method “was never called” and all
following sections are skipped. However, the standard case
is that the method is called at least once and also calls other
methods itself. If no recursion is involved, a typical result like
the one in Figure 5 consists of three sentences reporting the
incoming calls , the outgoing calls , and the runtime . In
case of recursive calls (cf. Figure 1), another sentence is added
describing the recursion ; we inserted this information at the
beginning of the summary because recursion is one of the most
important characteristics of a method. For both incoming
and outgoing calls, additional information on the source or
target of the calls is added if it can be phrased in a simple
way. Whereas the example in Figure 5 does not contain such
additions, the example in Figure 1 provides more information
on both incoming (“[. . . ] with maximum calls from itself as
direct recursion”) and outgoing calls (“[. . . ] with maximum
calls to method getScaledSize”).

B. Method Calls

The next report section details the method calls. It consists
of three paragraphs: one for incoming calls, one for outgoing
calls, and one for recursion. These are only generated if the
respective information exists, that is, if there are incoming
or outgoing calls or if the method is called recursively. For
instance, the example in Figure 1 contains all three paragraphs,
whereas the one in Figure 5 skips the paragraph on recursion.

For describing the incoming calls in the first paragraph,
again, it makes a difference whether the method was called
recursively or not. For recursive calls, direct recursion (i.e.,
the method calling itself) is discerned from indirect recursion
(i.e., the method calling itself through a chain of other meth-
ods). The text describes the number of non-recursive, directly
recursive, and indirectly recursive calls with blue fill bars to get
a quick overview of the numbers. For the non-recursive calls,
the paragraph summarizes the callers: If the calls came from
only one or two methods, then the callers are named. If there



are more callers, the text just names the method which called
most frequently (e.g., “It was called maximum <1+> times
by method <method>.”) and considers special cases (e.g., “It
was called only 1 time each by all methods.”). The full list
of callers is always available when clicking on the number of
non-recursive callers. For public methods, we further provide
information whether they were called from outside the class
they are contained in or not (if not, this might be indicator to
change their visibility to private). A further special case is the
main method that does not have regular incoming calls—we
report that it is only invoked once by the virtual machine.

The next paragraph provides equivalent information on the
callees of the method of interest. Again, it discerns recursive
and non-recursive calls and informs about the callees—either
listing their names, or just naming the top ones while all
callees are available as a list on demand (cf. Figure 3). To
discern the call frequencies of callees from those of callers,
we use green fill bars instead of blue ones in this paragraph.

The final paragraph of the section describes the recursion
in detail if applicable (cf. Figure 1). Recursive calls form
a tree. The text summarizes the properties of this tree, in
particular, its deepest level of nesting and the level that is
reached most frequently. An interactively explorable histogram
provides more detail on the depth distribution (cf. Figure 4).
With this information, a programmer can check whether the
recursion works as expected. For instance, when drawing a
treemap of a file structure like in method paintEntries
(Figure 1), these statistics directly reflect the nesting structure
of the directory that shall be visualized.

C. Time Consumption

The last section reports details on the runtime consumption
of the method aggregated across all calls. As an important
distinction, the text discerns between self-time (i.e., the time
consumed by the instructions of the method itself) and runtime
consumption that stems from called methods (i.e., waiting for
outgoing calls to return). Yellow fill bars visualize these quan-
tities. Similar to the callee with the maximum call frequency,
we list here the callee that consumes the maximum runtime.
Further details can be explored in a list of all callees compara-
ble to the example in Figure 3. Since measuring performance
underlies different measurement uncertainty, if necessary, we
append a warning at the end of the paragraph (e.g., “Please
note the measurements are uncertain due to short runtime
of outgoing calls.”). To decide what warning needs to be
added, we developed a heuristic to estimate uncertainty of
measurement. Factors that increase the uncertainty are short
overall runtime and short runtime of outgoing calls. When the
calls are extremely short and for indirect recursion (which is
difficult to describe with respect to runtime consumption of a
method), the whole paragraph is shortened and just provides
the total runtime.

V. DEVELOPER FEEDBACK

The evaluation is focused on practitioner perception. As
such, we directly evaluate the result of our approach, i.e.,

generated reports produced for a set of software systems. We
therefore do not directly evaluate the decisions we have taken
to produce those reports, such as the decision graph. Two
aspects have to be considered:
• The work presented in this paper is the first iteration of

our overall effort of bridging the gap between profiling
and debugging tools with end users. This mean that we
are interested, at that current stage, in (i) identifying
potential use cases of our approach and (ii) obtaining
feedback for future iterations.

• As far as we are aware of, the Method Execution Report
technique is unique regarding both the information it
provides and the way information is presented. Although
some profiling tools are able to produce advanced detailed
reports of a runtime behavior, none is able to produce a
comprehensive report in the same spirit as our reports.
As such, there is no fair baseline to which we can
directly compare our approach to. For this reason, we
exclude carrying out a comparative empirical evaluation,
but compare the technique to others in a task-based
analysis (Section VI).

The research question we seek to answer is How Method
Execution Reports are perceived by practitioners? In such a
case, surveying a group of practitioners about their perceptions
for a given set of reports is therefore the strategy we employ.

A. Survey Description

We designed a survey composed of three parts. The first
part is about the personal experience and background of the
participant. The questions we ask cover (i) the programming
languages and environment the participant is familiar with, and
(ii) the known debugging and profiling techniques. The second
part briefly describes the Method Execution Report technique
in the same fashion as Section IV. This part is necessary to
ensure that all the participants receive the same information.

The third part presents a method execution report to the
participant and poses a set of questions about (Q1) the
textual content of the report, (Q2) the interaction and visual
elements offered by the report, (Q3) usefulness of the report,
(Q4) software engineering tasks for which the report may be
useful to have, (Q5) alternatives to the report, and (Q6) any
other criticism. We use reports produced for six different
methods, each belonging to a particular application. The
method size ranges from 12 to 111 lines of code (comments are
not accounted). The method paintEntries, illustrated in
Figure 1, is among the method execution reports we employed
in this experiment. Answers of the third part are reported
in plain English. The survey and all participant answers are
available as part of the online supplemental material.

B. Experiment Execution

During the execution of our experiment, we considered two
aspects: (i) participants results were collected on paper, and
(ii) method reports were presented on screen. Participants did
not have access to other sources of information, such as a
programming environment or the complete code base. Since



we aim to obtain feedback on our report while minimizing
possible bias, participants were restricted to only explore the
reports we provided.

C. Participants

In total, eleven participants took part in our survey: three
participants are PhD students in software engineering at the
University of Chile and the eight other participants are from
three different software development companies based in
Chile. The programming experience of the participants ranges
from 3 to 14 years, with 7.4 years as average, a median of
7 years, and a standard deviation of 3.3 years. Participants
are familiar with Java, and in particular the Eclipse, IntelliJ,
and Netbeans programming environments. Eight participants
are familiar with one or more dynamically typed languages,
including Python, JavaScript, and Pharo. Participants took 19
minutes (both average and median) to fill the survey. The
fastest participant took 9 minutes and the slowest took 31
minutes. We employed reports generated from seven different
Java software systems. Systems to be analyzed were evenly
distributed among the participants.

D. Results

Overall, the participants positively perceived the Method Ex-
ecution Reports. From the eleven participants, nine participants
rated the sentence “Overall, do you feel that such a report is
useful?” (Q3) with strongly agree or agree (on a five-point
scale from strongly disagree to strongly agree). During the
experiment, participant were free to ask any questions about
the survey and the report. No participants asked questions. The
remaining of this section summarizes participants’ answers.

Q1: Textual content of the report—Participants were
positive about the textual content of the report. For example,
Participants P2 and P4 mentioned: “The language used is
clear”, “The report is very useful to know where methods
spend time”, “the report provides data without redundant
text”, “[the report is] useful to know if a loop is working
correctly”. On the negative side, two participants raised some
English grammar issues.

Q2: Interaction and visual elements—Participants were
slightly less enthusiastic about the interaction and the visual
elements embedded in the textual content. Giving a meaning
to the color was perceived as difficult and not intuitive (e.g.,
P1, P2, P4). P9 said “it took me a little bit to understand
the percentage bars. However, once understood, they are
very useful”. Participants P3 and P6 are very positive. When
referring to the interaction that appears on demand, P6 says:
“We are used to hyperlinks in the web”.

Q3: Usefulness of the report—Nearly all the participants
were very positive on the usefulness of the report. For exam-
ple, P2 said “The report is useful because it helps understand
what the code is doing and where it spends most of the
execution time”, and P1 said “I think it would be more useful
having the information in the source code [instead of having
a webpage]”.

Q4: Software engineering tasks for which the report
may be useful to have—Most participants (e.g., P3, P4, P8,
P9) indicate that the reports are useful to find performance
problems and identifying bottlenecks. In addition, we obtained
the following answers:
• “The report is also good for people communicating

performance problem with other developers” (P2)
• “[the report is useful] when a developer needs to make

a refactoring or an optimization of the code” (P4)
• “useful to assess whether a loop is expensive” (P6)
• “detect bottlenecks when long running simulations” (P7)
• “useful when developing web applications (with some

very short time response)” (P11)
Q5: Alternative to the report—No participant knew of

a code monitoring tool that provides the same information
as we do. Nevertheless, some tools and techniques were
mentioned as a way to obtain part of the information we report:
“debugging framework” (P3), “Java Mission Control” (P4),
“gprof in C and C++” (P5), “Chrome profiler” (P10).

Q6: General criticism about the report—As a positive
criticism, P4 said “Minimalist design, does not include un-
necessary information”. In contrast, many participants com-
plained that the report is focused on one single method. More
than half of the participants felt unnecessarily restricted to
one single method. For example, “[the report should provide]
the ability for going deeper into the call tree” (P6), “having
more visual elements to help understanding the code flow (e.g.,
using a graph or tree)” (P7). Two participants complained
about the unnecessary separation between our report and the
programming environment (P1) and the source code (P11).

VI. TASK-BASED COMPARISON

Finally, we compare our approach to state-of-the-art tools.
However, it is difficult to decide which are the direct competi-
tors to compare with. We do not argue that Method Execution
Reports should replace any of the established debugging and
profiling tools, but that it fills a gap for understanding the
execution of a source code fragment. Hence, we have to
contrast our approach to a variety of types of tools. We show
that the main tasks our approach supports are not sufficiently
covered by the state of the art. Note that we do not list tasks
that our approach does not support but might be facilitated by
other tools.

A. Selected Approaches

Runtime information can be collected with a variety of
approaches from simple manual instrumentation (logging) to
sophisticated profiling tools. In particular, we discern the
following techniques:
• Breakpoint Debugger—Setting breakpoints, stepping

through them, and interactively exploring program state
like supported by the Eclipse IDE.

• Logging—Recording logging outputs using plain system
outputs or a logging framework such as Log4j.

• Profiling Call Tree—Inspecting an interactively expand-
able call tree of methods like provided by profiling tools



Fig. 6. Expanded JProfiler call tree (top) and call graph (bottom) for Java
method TreeMapPanel.paintEntries in a similar execution to the one
described in the report in Figure 1.

such as JProfiler; methods are represented multiple times
if executed in different parts of the tree (Figure 6, top).

• Profiling Call Graph—Inspecting an interactively ex-
pandable call graph provided by profiling tools such as
JProfiler (calls of the same method are aggregated into a
single node); the nodes and edges are annotated with call
frequency and runtime information (Figure 6, bottom).

This list is not complete but should cover the most widely
used tools to retrieve runtime information on method level. To
review a group of tools, we keep the following discussion on
a generic level. Still, to make the comparison more specific,
the named examples of tools act as representatives for each a
group of tools in the comparison.

B. Comparison Results

We manually played through three tasks regarding the
dynamic call structure of the methods (T1–T3) and two tasks
concerned with runtime consumption (T4–T5). Table I lists
the results, describing how each of the tasks can be addressed
with each of the approaches. We summarize the level of
support on a qualitative scale ranging from supported ++

to not supported −− . In addition, we explain the steps
that need to be taken for every rating. Note that, although
we tried to be as objective and fair as possible, our ratings
and explanations might still be influenced by our subjective
opinion. The analysis was conducted by a single author.

Regarding the tasks related to method calls (T1–T3), it is
hard to retrieve the required information through breakpoint
debugging and logging, for non-trivial cases even infeasible in
practical application. Incoming calls are easier to observe with
these approaches than outgoing one—one sets a breakpoint or
adds a logging instruction at the beginning of the method. In

contrast, outgoing calls are harder to trace because the method
would need to be paused or instrumented at each instruction
calling another method, which results in an unrealistic effort.
Profiling call trees and graphs better support tasks T1–T3.
In call trees, however, the different incoming calls produce
separate nodes—if there are multiple incoming calls, infor-
mation needs to be assembled across the tree (cf. Figure 6,
top). In contrast, all calls of the same method are already
aggregated in a node of a call graph and tasks T1 and T2
are easy to answer (cf. Figure 6, bottom). Note that profilers
such as JProfiler also allow for aggregating nodes in the call
tree for selected nodes—we consider this to be a variant of a
call graph representation. Information on recursion (T3) can be
better explored in call trees, but the levels need to be expanded
manually; in the call graph, recursion is aggregated to self-
edges and cycles, but cannot be explored in detail.

For profiling a program (T4–T5), breakpoint debugging
and logging are not suitable because breakpoint debugging
invalidates the measurement by pausing the program and
manual logging instrumentation for profiling are only feasible
on a coarse granularity (e.g., measuring the total runtime of
a benchmark). Of course, the representations of profilers are
much better suited for these tasks. Again, the problem of a
call tree is that we are interested in aggregated information for
all calls of a method, which needs to be manually collected
in the tree. The call graph comes much closer to our textual
representation because it is based on this aggregation. Like
shown in Figure 6 (bottom), time information can be quickly
read from the color coding applied to the node (T4) and the
edges (T5).

C. Discussion

In general, the comparison shows that call graph represen-
tations are most similar to our textual reports—they aggregate
calls for the same method and show call frequencies as well
as time consumption. The main difference between these
representations is that we currently focus on a single method
only, but the graph representation provides an overview of a
wider call context. However, in the call graph, information on
the characteristics of the recursion is hard to acquire. Also,
it would be more difficult to extend graphical representation
with further information as suggested by developers in the user
study. Also, graph representations run into scalability issues
when representing larger quantities of incoming or outgoing
calls. JProfiler therefore limits the number of initially shown
adjacent nodes (cf. Figure 6). In contrast, our reports easily
scale to larger numbers of calls because we aggregate them
into lists that are only shown on demand. We believe that the
two representations complement each other and consider inte-
grating a call graph representation to our reports. Interactively
connecting it with the information described in the text could
improve understandability further.

For now, the presented reports are limited to describing
methods individually. This is a useful starting point, but as
also indicated by developer feedback, for a versatile practical
application, it would be helpful to create such reports at least



TABLE I
HOW TASKS CAN BE ANSWERED WITH METHOD EXECUTION REPORTS IN COMPARISON TO EXISTING SOFTWARE DEVELOPMENT TOOLS. LEGEND –

++ SUPPORTED; + SUPPORTED, BUT COMPLICATED AND TIME-CONSUMING; − ONLY PARTIALLY SUPPORTED; −− NOT SUPPORTED.

Task Execution Report Breakpoint Debugger Logging Profiling Call Tree Profiling Call Graph

Method Calls

T1 Which methods called the
method of interest ( i.e.,
callers) and what was the
distribution of calls?

++ Read the first paragraph
of the Method Calls section
and explore the list of callers.

+ Set a breakpoint at the
method definition and iterate
through all calls.

+ Set up a map of coun-
ters (caller → integer) and
increase at method entrance
the respective counter.

+ Find all instances of the
method in the tree and retrieve
the callers as parent nodes in
the tree.

++ Follow incoming edges
of the method node and com-
pare quantities of weighted
edges.

T2 Which other methods were
called by the method of
interest ( i.e., callees) and what
was the distribution of calls?

++ Read the second para-
graph of the Method Calls
section and explore the list of
callees.

− Step through the in-
structions and observe the
outgoing calls; usually, too
much effort to do for all calls.

− Instrument instructions
containing outgoing calls; usu-
ally, too much effort to do for
all calls.

+ Find all instances of the
method in the tree and retrieve
the callees as child nodes in
the tree.

+ Follow outgoing edges
of the method node; call fre-
quencies are not visualized
and only available on demand.

T3 Was the method called
recursively and what were the
characteristics of the recursion
(direct/indirect recursion,
depth levels)?

++ Read the Summary and
Method Calls section, in par-
ticular, the third paragraph of
the Method Calls section.

− Set breakpoints at a di-
rect recursive calls; recursion
statistics and information on
indirect recursion not to ac-
quire with reasonable effort.

− Direct: insert a logging
at all direct recursive calls to
see whether they are exe-
cuted; indirect: not supported
with reasonable effort.

− Find all instances of the
method in the tree and manu-
ally expand the tree; recursion
statistics and indirect recur-
sion infeasible to investigate.

− Find self-edges for di-
rect recursion and circles for
indirect recursion; depth levels
cannot be retrieved.

Time Consumption

T4 What is the aggregated
method call time and self
time?

++ Read the Runtime Con-
sumption section.

−− Pausing the program in-
terferes with time measure-
ment.

− Record start and end
time of a call to measure ag-
gregated call time; self time
not feasible to measure.

+ Find all instances of the
method in the tree and inves-
tigate the incoming runtime
consumption.

++ Read the color and
the annotation of the method
node.

T5 How does the time
consumption propagate
through outgoing calls to other
methods?

++ Read the Runtime Con-
sumption section and explore
the list of callees with anno-
tated runtime information.

−− Pausing the program in-
terferes with time measure-
ment.

−− Usually not feasible be-
cause all callees would need
to be manually instrumented.

+ Find all instances of the
method in the tree and in-
vestigate the outgoing runtime
consumption.

++ Follow outgoing edges
of the method and read time
consumption from the color of
the edges.

for sets of methods and to connect the reports by hyperlinks.
Future research could also explore whether it is possible
and useful to create comparable reports on higher level of
abstraction, such as class or package level. The ultimate
challenge would be to create a meaningful report for a full
execution or even sets of executions. Together with broadening
the scope of the reports, a better integration of the reports
with IDEs and profilers becomes indispensable. In the IDE, a
developer could execute a program in a special profiling mode
(comparable to the debug mode) and then study the generated
reports for a selected set of methods. In a profiler, the report
could act as a detail view for a method that appears when
selecting a method in a call tree or graph.

VII. CONCLUSION

We presented Method Execution Reports, which provide a
quick summary of the behavior of a method within a specific
execution of the program. Feedback from developers provides
evidence on the value and use cases of the approach as well as
suggests specific extensions. Our task-based comparison shows
which questions about program behavior the reports answer
already. Method Execution Reports complement debugging
and logging approaches and might act as an entry point of
a detailed analysis using call tree and graph representations
of profilers. We consider our work as a proof of concept to
demonstrate the potential of textual description of program
behavior augmented by visualizations and hope it will trigger
further research and tooling leveraging such approaches.
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