
µPrintGen: Supporting Workflow Logs Analysis
Through Visual Microprint

Sebastian Alfaro
Department of Computer Science

University of Chile
Santiago, Chile

sebastian.alfaro@outlook.cl

Alexandre Bergel
RelationalAI

Bern, Switzerland
alexandre.bergel@relational.ai

Jocelyn Simmonds
Department of Computer Science

University of Chile
Santiago, Chile

jsimmond@dcc.uchile.cl

Abstract—A microprint is a visualization that condenses the
contents of a text file into a small space. This is done by
using colored scaled-down characters or pixels to represent each
character of the text. The colors aim to highlight information
relevant to the user. We have created µPrintGen, a framework
for creating custom microprints by associating colors to rules
that specify what is included or excluded from the line, with
plain text or regular expressions. At the same time, the user can
customize the look and structure of the created microprint for
ease of use. We also created µPrintVis, a website for viewing the
created microprints that supports various navigation features,
like zoom and search. Feedback from the Rust and Julia open-
source communities shows that µPrintGen lets users navigate
through large log files, while easily highlighting reported errors.
Two experts agree on the benefits of µPrintGen, compared to
pure textual-based searching features commonly offered by text
editors.

Video URL: https://youtu.be/lJIZHLQdXi0
Index Terms—Microprint, workflow analysis, pixel-based visu-

alization.

I. INTRODUCTION

Microprints offer a way of visualizing source code that
is commonly used in modern programming environments.
Consider VSCode, one of the mainstream programming envi-
ronments. Each text editor window includes a vertical panel by
default, where a representation of the source code, as seen from
a far-away point of view, is shown. We refer to this visualization
as a microprint. Conceptually, each character from the source
code is represented as one pixel or scaled-down character in
the microprint. Our implementation retains the white space
found in the original file for ease of understanding and analysis.
Coloring could be employed for a number of reasons, including
highlighting method/function definitions, comments, and results
of text searches.

Building and executing automated workflows are an essential
part of software development nowadays. As part of continuous
development and continuous integration (CI/CD) practices,
workflows specify tasks that can be automated, thus alleviating
practitioners from manual and tedious tasks (e.g., running unit
tests and deploying applications). GitHub Actions can execute
a workflow upon the occurrence of particular events like git
commit or merge. Executing a workflow typically produces
large log files, which practitioners can access from CI/CD
systems as a single text file. Searching in such logs typically

involves using the mouse to scroll, as well as using textual
pattern searching.

This paper is about using microprints to help practitioners
extract knowledge from log files, using the CI/CD scenario as
motivation. We have developed three complementary tools:

• µPrintGen, a framework for building context-specific
microprints from text files, where the color highlight rules
are specified in a separate configuration file.

• µPrintVis, a tool for visualizing microprints;
• GHµPrintGen, a GitHub Action that uses µPrintGen to

generate a microprint from a GitHub Actions workflow,
and generates a link to easily visualize it with µPrintVis.

The hypothesis we are exploring is that microprints signifi-
cantly help practitioners (i) extract knowledge from a workflow
log file and (ii) navigate between components.

II. USING MICROPRINTS TO VISUALIZE WORKFLOWS

A. CI/CD workflows

Automated workflows are an essential part of software
development. Recommended as part of standard CI/CD prac-
tices [1], workflows are used to make CI/CD tasks easy to run
automatically and regularly. Examples of CI/CD tasks include
unit test execution, automatic deployment, and binary building.
Logs produced by the execution of those CI/CD tasks are then
made available to the end user for manual inspection. This
manual inspection is often necessary to understand the cause
of a failure, debug the workflow, or simply assess whether the
workflow was executed as expected.

In other words, automated workflows are a series of jobs,
run in succession or in parallel, that contribute to a particular
CI/CD task. The output of each job or step in the automated
workflow is logged for the user. Logs are text reports that
inform the user about the status of the work that was carried
out, errors, or general information about the process.

There are several CI/CD platforms available, and although
they have differences, one aspect that all popular platforms
have in common is a lack of adequate tooling to let end-users
easily process workflow logs. All these platforms offer is text-
searching through a basic search box, so end-users usually
need to resort to reading log contents in depth [2]. Treating
logs as simple text files makes it hard for end-users to derive
relevant patterns from the log contents.

https://youtu.be/lJIZHLQdXi0

At the same time, CI/CD processes are commonly run
multiple times with small differences in the related application
base code or in the workflow definition. Detecting anomalies
in a process that can have tiny differences between runs makes
it a taxing job to analyze logs: errors or anomalies can go by
silently without alerting the people involved.

B. Microprints

Robbes et al. [3] define microprints as “pixel-based character-
to-pixel representations of methods, enriched with semantical
information mapped on nominal colors”. Bacher et al. [4]
propose the notion of a code-map metaphor as “the mapping
of source code to a zoomed-out representation, either by the
use of pixels, pixel lines, or a scaled-down representation of
text”. In the context of helping visualize large log files, we
merge both these definitions into the following one: zoomable
and navigable pixel-based character-to-pixel representation
enriched with semantical information related to workflow
mapped on nominal colors.

Fig. 1: Overview of our approach.

Figure 1 shows our approach. µPrintGen first takes as input
a log file and a configuration file and generates a set of SVG
descriptions as output. µPrintVis is then used to visualize the
corresponding microprint.

µPrintGen is a Python package/console command that
creates a microprint representation of any text file, using a
configuration file and saving it to an SVG file. The microprint
representation generated uses a scaled-down font of each
character in the text file and preserves the original file
indentation and spacing. This is an important aspect of this
component since this direct mapping between the text file and
the microprint improves navigation.

µPrintGen generates the microprint by scanning each line of
the input log file and assessing if the line meets the criteria of
any of the rules set in the configuration file (text search or regex
match). If a rule is matched, the background and text colors
of that line are set to the ones defined in the configuration file
for that rule. By highlighting important lines with different
colors, the small size of the microprint lets users identify visual
patterns and possibly relevant lines in the log.

Users can customize almost all visual aspects of a microprint
by creating a configuration file. This includes defining the scale
factor, the amount of vertical spacing, the microprint width, the
maximum microprint height, the number of columns, the space
between these columns, the font color, and the font family to
be used.

As configuration files offer a high level of customization, not
only in how a microprint appears, but also in what information
is highlighted. Two microprints generated by two projects
from different communities can look entirely different from
one another. This is an important feature of our tool because

different projects have different information that needs to be
highlighted. For example, some CI/CD workflows have tests,
some do not; some projects need to search for specific errors,
others want to highlight any error, etc.

For example, the microprints shown in Fig. 2 have been
created from the same log file but with different configurations.
They have different fonts, background colors, text colors, and
column widths and the third one even shows the text in two
columns instead of one.

(a) (b) (c)

Fig. 2: Different microprints generated from the same log file.

Here is the JSON configuration file with the color mapping
we defined for our proof-of-concept example from the Rust
community.

{
”scale”: 2,
”vertical spacing”: 1.4,
”microprint width”: 140,
”default colors”: {

”background color”: ”rgb(30, 30, 30)”,
”text color”: ”white”

},
”line rules”: [

{
”includes”: [

”(?:ˆ|)(?:error|panicked|failed|
stacktrace)(?:$| |:)”

],
”excludes”: [

”installing”
],
”text color”: ”white”,
”background color”: ”#910404”

}, {
”includes”: [

”(?:ˆ|\\W)warning(?:$|\\W)”
],
”text color”: ”black”,
”background color”: ”#dfdf07”

}, {
”includes”: [

”(?:ˆ|\\W)test result(?:$|\\W)”
],
”text color”: ”black”,
”background color”: ”#d0e6c9”

}, {
”includes”: [

”(?:ˆ|\\W)successfully(?:$|\\W)”
],
”text color”: ”white”,
”background color”: ”rgb(38, 162, 105)”

}
],
”font−family”: ”monospace, monospace”

}

Listing 1: JSON configuration file for Rust proof-of-concept.

These rules highlight erroneous messages, warnings, test
results, and whether the build was successful. The microprint
in Fig. 4 was generated using these specific rules. The
entire microprint can be seen on the website https:/bit.ly/
Microprint-Example-Rust (albeit with slight modifications
to avoid false positives).

µPrintVis is the visualization tool we designed to help
users read and navigate through logs, aided by their microprint
representations. This tool loads the microprint generated by
µPrintGen and creates a full-size representation of it, using the
same highlighting, colors, and font size. That way, the user can
use the microprint representation of the logs to locate areas
of interest, and quickly navigate to these lines by clicking the
microprint. At the same time, the tool offers a search tool to
highlight patterns using custom colors in real time.

The user can also generate a microprint by uploading a text
file and a JSON configuration file to µPrintVis, like the one
shown in Listing 1. In this case, µPrintGen is first used to
generate the microprint and then loaded in µPrintVis for easier
traversal and analysis. The uploaded files are only temporarily
used to generate the microprint, they are not saved to our
server.

The microprint is located to the right of the full-size text
and can be used in different ways to navigate the document.
If the user clicks on the microprint, the full-size page scrolls
automatically to the corresponding line. When the user hovers
over the microprint, a semi-transparent square appears. This
square denotes the visible area of the page in the microprint
and can be dragged to scroll the full-size page.

(a) View customization settings (b) Search box

Fig. 3: Parts of µPrintVis settings menu

The visualization tool has a settings menu that gives the
user the ability to customize the viewing experience of the text
and microprint, among other things. For example, the options
shown in Fig. 3a) let the user (i) increase/decrease the font
size of the full-size text; (ii) toggle the color highlights of the
full-size text, which can make it easier to read log messages
once they have been found through the microprint and (iii)
show/hide row numbers. The search box shown in Fig. 3b lets
the user search for a phrase in the microprint. What makes
this search function different from the browser search function
is that the user can specify the background and text colors for
the search results, so all the lines that match the phrase are
highlighted with those colors. This can help the user define
new configuration rules, or find patterns they had not yet seen.

Finally, the user can download the generated microprint
to analyze it later. This is an SVG file that has the entire
text in microprint format, with the highlights and other visual

cues defined by the configuration file. This file can be directly
uploaded to µPrintVis for visualization, the user does not need
to regenerate the microprint in order to visualize it.

C. Integration with GitHub Actions

GHµPrintGen is a GitHub action that makes use of
µPrintGen to generate microprints as part of an automated
GitHub CI/CD workflow. Here, jobs are sets of steps, which
can be shell scripts or actions to be executed. GHµPrintGen is
one such an action.

GHµPrintGen is designed to automatically generate a micro-
print of the logs generated by a job inside a GitHub workflow.
For that, it needs to be added as a step inside a workflow.
Ideally, inside a job whose sole purpose is to generate the
microprint of another, due to GitHub limitations.

In order to facilitate the analysis of the resulting microprint,
by default this action will create a Markdown file that includes
a link to µPrintVis, with the microprint already loaded (this
behavior can be turned off in the GitHub action options).
Otherwise, the user would need to download the generated
microprint and upload it µPrintVis each time they want to
analyze the log file. The Markdown file is saved to the user’s
computer. We use Markdown because these can include links
to other Github pages.

III. PRELIMINARY EVALUATION

To gather initial feedback about the usefulness of our
tool suite, we looked for projects that regularly use CI/CD
workflows that could benefit from viewing microprints of their
CI/CD logs. Both the Julia and Rust programming language
projects meet these requirements.

We created a microprint for each project from existing logs
and presented them to the corresponding community, using
existing project communication channels: a Slack group for
Julia and a Zulip channel for Rust. We got feedback from two
users, one from each community. Even though the sample size
is small, other members of the project expressed interest in
our tool, reacting positively to our posts.

The initial feedback we received is promising with respect
to two aspects. First, both users expressed interest in the tool.
One even said that the tool was something they had “wanted
for a long time”. The second promising aspect of the feedback
is regarding the perceived usefulness of the tool. The Julia
project member said that: “[I] have to sit through long log
files to find one line that shows me a bug, and I think this tool
would be very helpful”. The Rust project member found a real
bug in the workflow that needed to be fixed, which we show
in Fig. 4. This error should have terminated the workflow but
did not. It had not been found through manual inspection of
the log file, since it is thousands of lines long.

These are two real examples of how our tool suite can be used
by developers who work with non-trivial workflows, generating
large log files. It facilitates the analysis and monitoring of the
workflows, highlighting possibly relevant log lines. Also, the
highlighting rules can be customized to the specific needs of
each project and what they consider important.

https:/bit.ly/Microprint-Example-Rust
https:/bit.ly/Microprint-Example-Rust

Fig. 4: Example of a real bug found in the Rust CI/CD workflow. The rules were set to highlight lines that contain error
information and lines that contain the word “successfully”. The microprint helped a community member find this error in a
4.5k line log file, by looking at a compact representation of the entire log.

(a) Sublime: minimap (b) Kate:
scrollbar
minimap

(c) VSCode:
code minimap

Fig. 5: Microprint examples from existing tools

IV. RELATED WORK

The idea of microprint has been given many different names,
like code-map, minimap, and microprint, and while they all
share the principle of representing text in a compact format,
the exact implementations differ from each other. Here we
present existing implementations, and we discuss how they
differ from our solution.

The code map metaphor [4]. (1992-2015). Bacher et al.
conducted a systematic literature review about the use of the
“code-map metaphor” (what we call microprint in this context)
for software visualization. The primary research question the
paper aims to answer is: “How is the code-map metaphor
employed by existing software visualizations and what evidence
exists of its usefulness?”

The authors analyzed 29 primary studies, which together
describe 21 software development tools that make use of the
code-map metaphor for visualization (published between 1992
and 2015). The authors used the following dimensions to guide
the data extraction process: (i) Task: why this visualization was
needed; (ii) Audience: who would use this visualization; (iii)
Target: which aspects of the source code are visualized; (iv)
Representation: how accurate is the visualization; (v) Medium:
how is the visualization shown; and (vi) Evidence: was the
visualization effective.

The paper concludes that the code-map metaphor is “widely
perceived to be useful for software development” because
it serves as a natural mapping from the source code to a
visual representation. Also, the qualitative validations and user
experiences reported in the primary studies also align with
this vision. However, they also reported there was a lack of
sizable quantitative evaluations of these visualizations, making
the claim of the usefulness of the visualization for software
development weak.

All of the tools presented by the primary studies have fixed
rules and designs. This means that they only highlight a set
number of elements, depending on the goal of the visualization.
For example, one tool highlights source code syntax errors,
while another uses different colors to show the age of different
parts of the source code, and another uses colors to highlight
developer activity. At the same time, the way this information
is shown is fixed for each tool: users cannot customize the
colors, font sizes, width of the visualization, etc.

We address these limitations by giving the user the ability to
customize not only what gets highlighted and with what colors,
but also how the whole visualization gets rendered; from font
families and font sizes to the number of columns and amount
of vertical spacing between rows of the complete microprint
representation.

Sublime Text. [5] [5a] (2010) Sublime is a text editor that
was presented for the first time in 2007 [6], and in 2010 it
began to include microprints [7]. To our knowledge, it has not
been explicitly named anywhere except in the configuration
files, where it is referred to as a minimap.

Here, the minimap is shown to the right of the text area, with
each character of the text as a scaled-down font representation
of the character in the minimap. A semi-transparent square
appears in the minimap when the mouse hovers over it, which
shows the visible area in the text at that current moment.
Clicking in the square and dragging it up and down scrolls
the whole document. Also, clicking anywhere in the minimap
scrolls the document to the corresponding part.

In terms of customization, the user cannot customize the
rules of highlighting for the microprint, but can customize
what gets highlighted by creating a custom theme for Sublime.

The custom theme can have a set of rules that uses scopes,
which define what gets highlighted and how. It permits the
highlighting of specific types of words, like variables, strings,
numbers, etc. However, the user cannot specify specific words
to highlight, like a phrase in a line.

Compared to our implementation, the customization in
Sublime is on the one hand more powerful, since it permits
highlighting of words and not only lines, but it cannot highlight
based on the content of the word. Also, the user needs to create
an entire theme for the application for each use case they may
have, which limits it in the context of analyzing different logs
from different projects.

Kate. [8] [5b] (2014) The text editor Kate uses a similar
implementation of the concept, calling it scrollbar minimap
instead. It only shows a pixel representation of the text, not
the actual words in a smaller font. As for visualization, it
also uses the area highlights to show the visible area of the
document, and the user can scroll the document by dragging it.
This highlight area is always visible, unlike the Visual Studio
Code implementation, which disappears until the user moves
the cursor over the minimap.

An important difference to our tool is that the Kate scrollbar
minimap does not move proportionally to the scroll of the full-
sized document. The scrollbar minimap is exactly the same
height as the text editor window. So no matter the amount
of text in the file or the height of the window, the scrollbar
minimap never scrolls. This means that when there is more
text in the file, or the window height gets smaller, the size of
the text representation inside the scrollbar minimap decreases
to make it fit the existing area.

In terms of customization, the only way the user can
customize the colors of the minimap is by changing the theme
of the whole editor, or by changing the text file type. Kate
automatically infers the file type from its extension, and changes
what it highlights and in what color. For example, in a Python
file, the function definitions will be highlighted in different
colors. There is no way for the user to set rules about what
should be highlighted and in what colors, apart from the theme
and rules associated to the file type. Our implementation gives
the user this option.

Visual Studio Code. [9] [5c] (2017) The code editor Visual
Studio Code uses a visualization of the contents of the files that
correspond to our definition of what a microprint is. Although
it is placed in the editor’s context, it is called a minimap. It
shows a condensed representation of the files, using a small
font, to the right-hand side of the screen, by default. It offers
some customization options, like showing the minimap to the
left of the text file, in one of three sizes, and the user can toggle
between showing colored pixels instead of the real characters.

We took great inspiration from its presentation of the
microprints, as well as how the user can interact with them. As
the user scrolls the page, the microprint scrolls proportionally.
At the same time, there is a highlighted semi-transparent area in
the microprint that shows the visible area inside the document
at any time. That way, the user always knows what part of the
file is being shown in the microprint. An added bonus of the

highlighted area is that the user can scroll the document by
dragging it, which helps with navigating the microprint.

In terms of customization, this implementation is a bit more
robust than the others because is backed up by the ability of the
editor to have extensions. These extensions can be used to add
rules so that the minimap to highlight different things in the
source code. Common implementations of these are language-
specific linters, that highlight syntax errors and warnings of
interest to that specific programming language. On the other
hand, personalization of the minimap itself is lackluster, as it
only offers three possible sizes and does not allow color or
font changes.

V. CONCLUSION

Microprints for workflows. This paper presented a tool suite
intended to alleviate the search and navigation in logs from
CI/CD workflows. Our initial and informal evaluation illustrates
the benefits of our tool suite as indicated by members of the
Julia and Rust programming language communities.
Future work. The biggest limitation of the current implementa-
tion of the microprint is that it can only highlight information
based on line-by-line regex or simple word search. This is a
limitation because even though regex can be powerful, it can
be computationally expensive. Also, applying highlighting line
by line does not let the tool find blocks of data that could be
useful or interesting to the end-user.

As such, we plan to explore different ways to help users
highlight useful data. For example, we would like to add
configuration rules to aid in the identification of structures in
the logs and blocks of text that span multiple lines. We also
want to add other ways of testing that a line or multiple lines
fit a certain pattern, additionally to regex pattern matching.

Another possible enhancement of the tool is to give the
user the possibility of comparing two versions of the text and
highlighting the difference between the two. This could help
analyze CI/CD workflows by showing a clearer view of the
changes introduced between one version and another and for
identifying anomalies or unexpected changes.

REFERENCES

[1] GitHub. (2021) Continuous integration and continuous delivery
(ci/cd) fundamentals — github resources. [Online]. Available: https:
//resources.github.com/ci-cd/

[2] Katalon. (2023) Best 14 ci/cd tools you must know — updated for 2023.
[Online]. Available: https://katalon.com/resources-center/blog/ci-cd-tools

[3] R. Robbes, S. Ducasse, and M. Lanza, “Microprints: A pixel-based
semantically rich visualization of methods,” in European Smalltalk User
Group, 2005.

[4] I. Bacher, B. Mac Namee, and J. Kelleher. (2017) The code-map
metaphor - a review of its use within software visualisations. [Online].
Available: https://arrow.tudublin.ie/scschcomcon/223/

[5] Sublime. (2023) Sublime text - text editing, done right. [Online].
Available: https://www.sublimetext.com/

[6] ——. (2007) November 2007 - news - sublime hq. [Online]. Available:
https://www.sublimetext.com/blog/articles/2007/11

[7] ——. (2010) February 2010 - news - sublime hq. [Online]. Available:
https://www.sublimetext.com/blog/articles/2010/02

[8] KDE. (2023) Kate - get an edge in editing. [Online]. Available:
https://kate-editor.org/

[9] Microsoft. (2023) Visual studio code - code editing. redefined. [Online].
Available: https://code.visualstudio.com/

https://resources.github.com/ci-cd/
https://resources.github.com/ci-cd/
https://katalon.com/resources-center/blog/ci-cd-tools
https://arrow.tudublin.ie/scschcomcon/223/
https://www.sublimetext.com/
https://www.sublimetext.com/blog/articles/2007/11
https://www.sublimetext.com/blog/articles/2010/02
https://kate-editor.org/
https://code.visualstudio.com/

	Introduction
	Using Microprints to Visualize Workflows
	CI/CD workflows
	Microprints
	Integration with GitHub Actions

	Preliminary Evaluation
	Related Work
	Conclusion
	References

