Tracking Down Performance Variation
against Source Code Evolution

Juan Pablo Sandoval Alcocer, Alexandre Bergel

PLEIAD Lab, Department of Computer Science (DCC), University of Chile, Chile
{jsandova,abergel}@dcc.uchile.cl

Abstract

Little is known about how software performance evolves
across software revisions. The severity of this situation is
high since (i) most performance variations seem to happen
accidentally and (ii) addressing a performance regression is
challenging, especially when functional code is stacked on it.
This paper reports an empirical study on the performance
evolution of 19 applications, totaling over 19 MLOC. It took
52 days to run our 49 benchmarks. By relating performance
variation with source code revisions, we found out that: (i) 1
out of every 3 application revisions introduces a performance
variation, (ii) performance variations may be classified into
9 patterns, (iii) the most prominent cause of performance re-
gression involves loops and collections. We carefully describe
the patterns we identified, and detail how we addressed the
numerous challenges we faced to complete our experiment.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Testing and Debugging; D.4.8 [Operating Sys-
tems]: Performance

General Terms
Experimentation

Languages, Measurement, Performance,

Keywords Performance Variation, Performance Analysis,
Performance Evolution

1. Introduction

“A program that is used in a real-world environment
necessarily must change, or it becomes progressively
less useful in that environment” [10].

Programmers make many changes to a program to eventually
find a good solution for a given task (i.e., fixing a bug,

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

DLS’15, October 27, 2015, Pittsburgh, PA, USA
© 2015 ACM. 978-1-4503-3690-1/15/10...
http://dx.doi.org/10.1145/2816707.2816718

129

adding a feature, optimizing) [18]. Continuous software
changes may inadvertently introduce a drop in performance at
runtime. It is often perceived that the longer the performance
loss remains undiscovered, the harder it is to remove the
loss. Performance regression testing is an effective way
to identify performance regressions in early stages. Such
regressions refer to situations where software performance
degrades in comparison to previous releases, though the
new version behaves correctly [11]. Despite the numerous
solutions proposed by the software engineering community
to monitor performance evolution!, little is known about the
force behind source code revisions that trigger performance
variations.

This paper conducts a comprehensive study of the per-
formance evolution of 49 benchmarks along the evolution
of 1,439 versions from a variety of 19 open source software
projects, in order to validate, or not, the following hypothesis:

H- Program performance is mostly affected by identified
recurrent source code changes across software revisions.
More precisely, we are interested in determining how
source code changes mostly affect program performance
along software evolution. Such hypothesis is relevant to
predict risky commits [7, 14].

Pharo Ecosystem. Verifying this hypothesis involves many
considerations which are technical (e.g., identifying perfor-
mance variations that are reproducible and significant) and
practical (e.g., identifying a set of benchmarks that are exe-
cutable for a large number of software revisions). Whereas
our long-term goal is to understand performance evolution
in general, we focus our analysis on the Pharo ecosystem.
Pharo? is an emerging language programming environment
which is dynamically typed, Smalltalk-inspired, and has a
syntax close to that of Ruby and Objective-C. Pharo offers the
necessary tooling, hooks, and an expressive reflective AP, to
measure time consumption of a benchmark set over hundreds
of software versions [1]. In addition, the Pharo community is

!'Several plugins are available for Jenkins, https://jenkins-ci.org.
2http://pharo.org

https://jenkins-ci.org
http://pharo.org

friendly and easily reachable, which is crucial when authors
have to be contacted.

Findings. Our experiment revealed a number of facts for the
Pharo applications we have considered:

* Only 2% of the application revisions have a commit
message related to performance, which strongly indicates
that developers are either not aware when they introduce
a performance regression or improvement or performance
is not within the scope of developer activities.

* Roughly 1 out of 3 application revisions introduce a
performance variation (> 1% or < —1%), and roughly
half of these performance variations are regressions and
half are improvements.

* The most prominent cause of performance regression is
composing collection operations, such as filtering, map-
ping, and iteration.

Outline. Section 2 discusses the relevance to monitor per-
formance variations. Section 3 describes the methodology
we have adopted to answer the hypothesis formulated above.
Section 4 presents the results of our experiment. Section 5
lists the performance regression patterns we have identified
while Section 6 lists the performance improvement patterns.
Section 7 discusses the threats to validity we are facing and
how we are addressing them. Section 8 gives a brief overview
of the related work. Section 9 concludes and presents an
overview of our future work.

2.

Our effort is motivated by the lack of adequate tools to moni-
tor and compare multiple execution profiles across software
revisions. A question naturally arises: Are developers aware
of the impact of their code revision on the system perfor-
mance? Answering this question may be the first step to
understanding how performance regression occurs in prac-
tice. Our intuition tells us that developers are aware of abrupt
performance variations, while a slow degradation remains
largely imperceptible.

Commit messages are a great opportunity for developers
to express themselves when committing a new application
revision. Commit messages are therefore a natural source
of information to understand whether or not developers are
aware of performance variation when committing. We manu-
ally analyzed the commits of 1,419 software revisions. After
discarding 140 (9.86%) empty commit messages, we find out
that only 33 (2.58%) of the commit messages are somehow
related to performance. We searched for the vocabulary com-
monly associated with performance® and references to bug
fixes related to performance. As a comparison, 796 (62.23%)

Imperceptible Performance Degradation

3 we considered the words: “speed”, “slow”, “performance”, “fast”.

130

messages discuss functional software properties or related to
improvement®.

Our goal here is not to conduct a rigorous analysis of re-
vision commit messages, but rather to offer a glimpse of the
extent of the problem regarding hidden performance varia-
tions. Note that we are not blaming Pharo developers for this
situation. Manually keeping track of performance evolution
is a tremendous task that requires discipline and a dedicated
infrastructure. Unfortunately, these two requirements are not
a priority within requirements set by the clients.

3. Methodology
3.1 Challenges

Identifying performance variations over multiple software
revisions is a difficult task. Several challenges have to be
addressed to identify variations that are trustworthy, reliable
and meaningful:

* Minimizing measurement bias — Measuring execution time
is a delicate operation that is highly sensitive to external
factors [12].

Identifying benchmarks — Each application has to provide
a set of benchmarks that are sufficiently robust against API
variation that may occur during the application history.
Identical benchmarks have to run through a large and
significant number of software revisions.

Identifying performance variation — Identifying a per-
formance variation is not trivial because of the multiple
configurations that may occur (e.g., a software revision
may improve the performance of particular benchmarks
while degrading performance of others).

Using one unique runtime — Only one runtime should be
used to avoid measurement bias that may be due to the
use of different execution runtimes.

3.2 Workflow

81: Pick S4: Execute

relevant S3: Identify benchmarks 85: Clean
software & benchmarks over the measurements

revisions revisions i

. S7: Source S6:
S onre §9: <1 codediff <4 Computing
comments Categorization <~ s8: CoT iff <1 performance

variations

Figure 1. Methodology structured around a 9 steps work-
flow.

To verify (or invalidate) the hypothesis given above (Sec-
tion 1), we have designed a methodology and structured it
along a dedicated workflow (Figure 1). The workflow con-
tains 9 different steps:

4 we considered the words “bug”, “fixes”, “refactoring”, “don’t work”, “does

not work”, “failing test”.

* S1 - Our very first step is to collect a number of rele-
vant applications. Each has to come with a number of
application revisions. A critical point is to make sure all
the revisions behave correctly and as expected under a
same execution environment (virtual machine, runtime,
essential libraries). We use a trial-and-error approach.

S2 - We analyze the revision comments to verify whether
or not authors are aware of a severe performance variation
they introduce.

S3 - For the next step, a number of benchmarks have to
be identified. These benchmarks have to be produced by
the software authors or members of the Pharo community.
The benchmarks have to be executable for a significant
portion of the software revisions, therefore they should be
resistant against API changes across revisions.

S4 - Getting relevant and trustworthy measurements by
executing the benchmarks over the revisions is delicate.
Understanding possible external factors to minimize mea-
sure bias [12] is key to making our result sound.

S5 - Measurements obtained from S4 may have to be
cleaned since not all the obtained measurements are
exploitable. For example, a particular software revision
may be broken or significantly deviate in its execution
from the main execution line. Such situations have to be
identified and manually inspected.

S6 - We compute the performance variations.

S7 - Identifying the source of performance evolution re-
quires to differentiating two source code revisions. This
step is crucial since it indicates the candidate of elemen-
tary source code changes causing the performance varia-
tion.

S8 - We compute the difference in the execution path.
Computing execution path difference complements the
source code comparison. This is necessary to identify the
exact source of a performance variation. For example,
a revision may change several methods, and identifying
which of these methods causes a performance variation
requires differentiating the execution profile. We therefore
compare calling context tree (CCT) [21] to estimate the
differences between the execution paths.

S9 - Source code revisions are then categorized based on
their differences. Combining the difference of the source
code and execution is key to precisely understanding a
performance variation.

The remainder of this section elaborates on some of the
steps described above.

3.3 Projects under Study (Step S1)

For this study, we have chosen a variety of 19 software
projects from the Pharo ecosystem. These software appli-
cations are intensively supported by the Pharo community.

131

Their sizes range from 5 KLOC to 8.86 MLOC (including
revisions). Project size is obtained by summing all the revi-
sions’ churn. These software applications are central in many
software development activities and supported by an active
community that is likely to be useful whenever the author or
the informal history of these software projects is consulted.
Table 1 summarizes these projects. The table gives the to-
tal lines of code and the number of method modifications
(M.M.) along software versions of each project. The last row
shows the total for the 19 projects analyzed in this study. In
total, we have analyzed 1,439 software versions that contain
19,505,646 lines of code and 40,783 method modifications.
On average, each version has 28 method modifications. Ta-
ble 1 also shows the average number of classes (NOC) and
methods (NOM) as an estimation of the project size. Other
columns of the table are described below. For the sake of
making our result reproducible, the version numbers of the
applications we have analyzed are available online”.

Table 1. Projects, number of analyzed release versions
(Vers), number of method modifications (MM), number of
lines of code (LOC), number of classes (NOC), number of
methods (NOM)

q Total Average

Project | Vers | yoc | MM | LOC |NOC | NOM
Morphic 214 | 8,860,430 | 1,808 | 41,404 270 | 6,897
Mondrian 150 | 1,822,350 | 2,318 | 12,149 205 | 1,776
Nautilus 214 | 2,370,443 | 1,253 | 11,077 145 1,710
Spec 270 | 2,932,847 | 6,320 | 10,863 261 | 2,320
Rubric 156 | 1,651,184 | 12,996 | 10,043 109 | 1,775
NeoCSV 10 80,924 99 8,093 8 114
Zinc 21 137,472 692 6,547 132 | 1,457
Roassal 150 952,037 | 8,081 6,347 173 | 1,199
AST 61 387,350 981 6,350 126 | 1,512
Regex 13 52,772 35 4,060 37 299
XMLSupport 22 72,006 | 2,875 3,273 76 974
Shout 16 36,414 100 2,276 17 296
PetitParser 7 14,076 288 2,011 57 452
Soup 6 9,631 62 1,606 23 262
XPath 10 13,661 1,233 1,367 33 335
GraphET 82 89,648 | 1,462 1,094 32 247
Announcements 12 5,521 23 461 18 127
NeoJSON 8 5,594 15 700 16 173
GTlInspector 17 11,296 142 665 15 114
Total 1,439 | 19,505,646 | 40,783 | 130,386 | 1,753 | 22,039

3.4 Identifying Benchmarks (Step S3)

A benchmark is a repeatable and measurable application
execution and is likely to describe a common and relevant
usage scenario of an application. We use benchmarks across
a large portion of the history of each application to measure
the performance variation of the application.

The Pharo ecosystem does not contain widely accepted
benchmarks, such as DaCaPo and SpecCPU ([3, 9]. We
therefore have to constitute a reliable benchmark.

The applications we selected are considered significant
for the Pharo community. They are often publicly discussed,
multi-authored (ranging from 2 to 446 authors), and have

Shttp://users.dcc.uchile.cl/~jsandova/icsme/html/

http://users.dcc.uchile.cl/~jsandova/icsme/html/

been under steady improvement over a long period of time.
An application is often packaged with some benchmarks.
We have revised those to exclude micro-benchmarks. We
are interested in large and long-running benchmarks. Micro-
benchmarks have a particular purpose that largely differ
from the aim of macro-benchmarks. For example, a micro-
benchmark may assess the effect of the just-in-time compiler
or the garbage collector for a very particular situation. Since
our objective encompasses general performance evolution,
we solely focus on macro-benchmarks. In case no benchmark
were found for an application, we directly contacted the
authors to obtain benchmarks.

The benchmarks per application are stable, which means
the very same benchmarks have to be run over all the
application versions. Such constraints lead to a challenge:
some of the benchmarks of an application could be executed
or meaningful only for a portion of the application history.
It may happen that a benchmark uses a feature that has
been recently introduced. This means that the benchmark
cannot be executed for older versions of the application since
the feature did not exist. Such benchmarks are not relevant
for our experiment since having the same benchmark is a
requirement. In such a case, we had to rework the benchmark
to make sure the recently introduced feature is not used.

Addressing this problem was particularly time consuming
since we had to go over a sequence of try-fix-repeat. In total,
we have 49 benchmarks ©, with an average of 3 per software
application.

3.5 Executing the Benchmarks (Step S4)

Measuring the execution time of a benchmark is a complex
operation. One of the main difficulties when measuring
execution time is avoiding (or reducing) measurement bias.
A bias may lead to an unfounded or even wrong sense of
the actual performance. Avoiding measurement bias when
profiling an execution is a well known problem among the
software performance community [6, 9, 12, 13].

To avoid distortion in our measurements, we adopted the
following three actions:

* Counting messages - Execution time estimation, as pro-
duced by traditional code execution profiler, is highly
sensitive to the execution environment, making it non re-
productive, non-deterministic and not comparable across
different execution platforms [2]. It has been shown that
counting messages is a reliable proxy for execution time in
Pharo [2]. Pharo is an object-oriented language making ex-
tensive use of message sends: most of the computation is
carried out by sending messages, including control struc-
ture and loop handling. Such an homogeneous execution
platform offers the interesting property to correlate execu-
tion time with message sends. Message counting is more
stable across multiple executions than time estimation. We
therefore exploit this property in our experiment.

6 Available at http://tinyurl.com/exp-benchmarks

132

* Warm-up - Correlation between message counting and
execution time is increased by adequately warming up the
environment before executing the benchmark. We perform
such a warm-up by executing a benchmark a couple of
times before starting the measurements.

Multiple executions - Counting messages is robust against
multiple executions. This means that executing a same
piece of code twice is likely to result in a very similar
number of message sends. Difference in the number
of message sends across multiple executions is due to
hash values (which are non-deterministically generated
by the virtual machine in the case of Pharo) and the use
of hash-based abstract data types, such as dictionaries
and hash tables [2]. To minimize the variation between
multiple executions, we execute each benchmark 10 times
(after having warmed up the execution environment) and
compute the average, which we refer to as p[v;, b;], for
version v; and benchmark b;.

We have monitored the performance evolution of the 49
benchmarks along the software versions of the projects under
study. We developed a tool’ to execute the benchmarks in
each software versions. It took 52 days to run our benchmarks.
The experiment was conducted on a MacBook Pro 2.8 GHz
Intel Core 17 with OSX 10.9.1 and 6GB 1333 MHz DDR3.
Counting messages has the benefit of being stable across
different operating systems, which means that even if our
experiment have been carried out on a MacBook, our findings
will be relevant for Windows and Linux [2].

We measure the error margin of all benchmarks with a
confidence level of 90 %. Since the benchmarks have different
number of sent messages (ones are greater than others), we
use the ratio of the error margin to the mean, to be able to
compare the different error margins. We found that almost
all benchmarks have a small error margin (< 1%). A very
few benchmarks have an error margin close to 2%: these
benchmarks use has values making them non-deterministic
(e.g., when sets and dictionaries are employed) to store
their model. Multiple executions of our benchmarks have
resulted in an error margin of +0.89% (on average). To not
misinterpret an error as a small measurement, we excluded
all the performance variations within the range +1%.

3.6 Computing Performance Variation (Step S6)

Consider two successive versions, v; and v;_1 of a software
application A and a benchmark b;. We have ¢ ranging from
6 to 214 depending on the considered application. The Soup
application has 6 source code revisions while Morphic has
214 revisions. We also have j ranging from 1 to 6. For
example, for the AST application we have only 1 benchmark
while we have 6 benchmarks for Roassal.

For an application A, we define the variation between
versions v; and v;_; for a given benchmark b; as:

"http://smalltalkhub.com/#!/~ juampi/Hydra

http://tinyurl.com/exp-benchmarks
http://smalltalkhub.com/#!/~juampi/Hydra

[vi, bj] — plvi_1, bj]
ﬂ[vi—lﬁ bj]

In case that V4 [v;, b;] > 0, benchmark b; takes longer to
execute for version v; when compared to version v;_1, which
indicates a performance regression. Having V4[v;, b;] <
0 indicates that the benchmark executed faster, therefore
resulting in a performance improvement.

VA[Uiabj] = (D

3.7 Categorizing Performance Variations (Step S9)

Step S9 categorizes source code revisions triggering a perfor-
mance variation. This is a crucial step to understanding the
cause of performance variations. Step S9 is the last step of
our workflow.

Step S6 computes (i) performance variations for bench-
marks and software versions and (ii) it indicates whether a
particular benchmark is slower or faster in a particular soft-
ware revision. Step S7 identifies what the differences are in
the source code of two software revisions. In particular, S7
outputs the list of classes and methods that have been modi-
fied between two software revisions, v; and v;_1, for which
a benchmark b; takes more or less time to execute in v; than
in v;_1. The revision between v; and v;_; may have a large
number of class and method modifications. Not all the mod-
ifications in a revision are responsible for the performance
variation. Understanding which of the elementary changes
contained in a revision leads to a performance variation re-
quires comparing the two execution profiles, which is the
objective of Step S8.

Step 9 identifies the exact source code modification that
leads to the performance variation by manually contrasting
source code changes and execution differences between two
software revisions. For example, code reformatting, code
comment addition, and dead code removal are likely to be
excluded at that stage since they usually do not have an impact
on performance variation.

4. Overall Results

In total we have gathered 1,439 different software revisions
from two Pharo source forges® and 49 benchmarks. Running
these benchmarks on all the software revisions (Step S4)
reveals that 1,248 (87%) of the versions execute at least 1
benchmark and 191 (13%) versions were unable to run a
benchmark.

Failing Benchmark Execution. The cause for a software
revision to fail to run a particular benchmark is multiple: a
revision may capture only a portion a larger software change,
implying that the revision may be broken; a benchmark may
be meaningless for a particular software revision, for example
if a revision implements a configuration management and
the benchmark does not set any. We have excluded these
191 revisions from our analysis. Non-working versions are

8http://smalltalkhub.com, http://squeaksource.com

133

simply left out during the variation computation and that the
variation between the last running version before and the first
version running after the defective version is computed.

Performance Evolution and Revision. Step S6 indicates
revisions v; that increase or reduce the execution time of
benchmark b; when compared with v;_;, the immediate
previous revision. We have categorized each software revision
v; into one of the four categories:

* Performance regression — the revision increases the ex-
ecution time of some benchmarks executed on the revi-
sion without decreasing any. This means V4[v;, b;] > 0
for all the executable benchmarks b; of the application.
At least one benchmark has a variation greater than 1%
(Valvi, br] > 0.01). The software revision is therefore
said to be a performance regression since at least one
benchmark executes more slowly.

Performance improvement — the revision decreases the
execution time of some benchmarks b; executed on the
revision (Va[v;, b;] < 0). At least one benchmark has
a variation less than -1% (Va[v;,b,] < —0.01). By
speeding up at least one benchmark without slowing down
any, the software revision is a performance improvement.

Unchanged performance — the revision keeps the bench-
mark execution time unmodified (i.e., within the range
+1%). A typical example of such a situation is (i) when
the revision adds comments without modifying an exe-
cutable portion of the application or (ii) when fixing typos
in classes or method names.

* Improvement and regression — the revision improves
the execution of some benchmarks and decreases the
execution of some other benchmarks. A typical situation is
when two benchmarks involve evolving distinct features.

Figure 2 reports our finding. We report the number of
versions according to two threshold, 1% and 5%. We have
1,248 revisions for which benchmarks may be executed on.
The four values reported in the figure total 1,229. The first
revision of the 19 applications are therefore excluded since
the first application commit cannot be associated with a
performance variation. We have adopted a threshold of 1%.
A performance variation within the range (-1%; +1%) is
considered as constant.

We found that 231 (18.80%) revisions are performance
regressions. We also found that, 212 (17.25%) revisions
introduce a global improvement. These results shows that
there are slightly more commits introducing a slowdown than
a speedup.

A total of 751 (61.11%) revisions do not modify the
benchmark execution time, which means that 478 (38.90%)
revisions have an impact on the application. Such a result is
significant: about 1 revision every 3 revisions introduces a
performance variation.

http://smalltalkhub.com
http://squeaksource.com

Regression 231

Improvement 212
Unchanged Performance

35
0 100

Improvement/Regression

200 300

(a) threshold =1 %

57
46

Regression
Improvement

Unchanged Performance 1121

Improvement/Regression 5

0 100 200 300 400

(b) threshold =5 %

Figure 2. Number of versions that i) cause a performance
regression in at least one benchmark ii) cause a performance
improvement in at least one benchmark iii) do not change the
performance of any benchmark and iv) cause a performance
regression in one benchmark and a performance improvement
in another benchmark.

1000

100

R SR R g i I e So2L22

Figure 3. Number of Performance Variations V' [v;, byaz] Of
all versions (%), where b,,,,, 1S the benchmark with most
variation in that version (Y log scale).

A total of 35 application revisions are both a regression
and an improvement: at least 1 benchmark has its execution
time increased while another has it decreased. Interestingly,
these 35 revisions comprise 3 UI frameworks: Spec, Morphic
and Roassal.

Performance Variation Distribution. Figure 3 gives the per-
formance variation distribution. The bar chart indicates the
amount of revisions for each range of performance varia-
tions. To cope with large disparities between values, we use a
logarithmic scale for the Y-axis. We have reported the great-
est benchmark regression or improvement for each version.

134

Adding up the bar totals 1,229, the number of versions as
reported in Figure 2. Variations within our error margin are
not reported. The distribution is not normal, even with a loga-
rithm transformation and excluding the outlier values.

The chart indicates that most of revisions have a relatively
small variation, within a range of -10% and +10%. The [-100,-
90) performance variation range contains 4 major speedups,
involving the Spec, Nautilus, Roassal, Zinc applications. A
close look at the source code variation related to 3 of these
speedups are the consequence of having adopted a better
algorithm and the 4th speedup is due to an improvement of
the dependent API (Pattern P9, described in Section 6).

The [150,inf) range indicates 7 severe slowdowns, involv-
ing the Spec, Roassal, PetitParser applications. Within these 7
slowdowns, 3 are caused by composing collection operations
(Pattern P1, Section 5), another 3 are due to domain related
optimization, and 1 due to an object proxy introduction (Pat-
tern P3, Section 5).

5. Categorizing Performance Regressions

By contrasting difference of source code (Step S7) and
variation in the execution path and calling-context trees (Step
S8), we have identified 55 performance variations of more
than +5% and less than -5%. This section discusses the
39 performance variations greater than +5% found in the
1,248 application revisions. Some of these 39 performance
regressions describe recurrent situations, which is the topic of
this section of the paper. Due to the precision of the calling-
context tree analysis, we could not go get a precision better
than 5%.

Measuring small performance variations is difficult be-
cause a profiler introduces a bias when gathered run-time
information. This effect is know as the observer effect. We
only consider variations are greater than 5 % and lower than
-5%.

Table 2. Patterns of performance variations

Performance Regressions 39(100%)
P1: Composing Collection Operations 14 (36%)
P2: Excessive Ul Update 6 (15%)
P3: Introducing Object Proxy 4 (10%)
P4: Regression in Dependent Project 4 (10%)
P5: Heavy Object Construction 3(7.5%)
Others 8 (20%)

Performance Improvements 16(100%)
P6: Deleting Redundant Method Call 4 (25%)
P7: Cache Introduction 3 (19%)
P8: Conditional Statements Addition 2 (13%)
P9: Improvement in Dependent Project 2 (13%)
Others 5 (31%)

Table 2 list of patterns with their occurrence in the set of
application variations we have considered.

5 5
4 4
3 3
2 2
1 1
O — - = - = = 0
S =2 NV W >R U N ®O S 2N O IE2ToO S I ©
L 990955953599 9o 2288888388
SN W A OO N ©® © F N W R U N © =
=3885383s8&38 =2 28883833383

(a) Composing Collection
tions

Opera- (b) Excessive UI Update

Figure 4. Performance Variation Distribution of Patterns P1
and P2

Each performance regression pattern has a title, a descrip-
tion and one or more examples taken from the examined ap-
plication revisions. Each example describes the source code
evolution of one or more methods. A source code line with
the leading — indicates the line was removed in the revision
while the leading + indicates the line was added. Unmarked
lines (without leading - or +) are found in both versions.

P1: Composing Collection Operations. It is known that
abstractions for data collection play a significant role in
application performance [4, 17]. This situation is exacerbated
in Pharo since loops and iterations are operations performed
on collections.

The pattern composing collection operations involves
the combination of collections operations typically filtering,
mapping, and iterating. The intuition behind the pattern is that
composing a collection operation on top of another operation
may contribute to degrade performance.

As an example, consider the modification of the on:
method in the Roassal application:

ROAdjustSizeOfNesting class>>on: element

— element do: [el | ...].
+ element elementsNotEdge do: [el | ...].

+ROElement>>elementsNotEdge
+ ~ elements reject: #isEdge

The method elementsNotEdge and the call to it was added
in the revision of the method on:. In the revision, the ex-

pression element do: [:el |...], which iterates over the collec-
tion contained in the variable element, has been replaced by
element elementsNotEdge do: [:el |...], which first filter out some

elements from the collection and then perform the iteration.
Even though the do: operation is carried out on a subset of
the original collection, the cost of filtering before iterating
is greater than simply iterating. The method on: is invoked
many times in one benchmark, causing a regression of 39%.

The pattern P1 occurs 14 times (35.89%) in our set of
39 performance regressions. Figure 4, left side, gives the
distribution of the performance variations due to P1. Although

135

there is no reason to expect a particular range of performance
regression to be associated with P1, one can notice that
regressions due to this pattern are likely to be severe.

P2: Excessive Ul Update. Graphical user interfaces often
have to be updated whenever the object model behind the
interface is updated. For example, if an offline server goes
online, the status icon in the monitoring Ul interface may
have to go green. However, updating the whole UI instead
of the icon status may be the cause of serious performance
regressions.

The pattern excessive UI update refers to a source code
revision that introduces a redraw, relayout or rebuild of the
user interface, resulting in a negative performance variation.
Such operations may be expensive, directly depending on the
number and complexity of the inner visual components.

For example, consider the modification made in the extent:

method in the Morphic application. Developers have re-
placed the call to updateSliderBounds by removeAllMorphs and
initializeSlider, because the method updateSliderBounds did not
work as expected in a number of scenarios. This issue was
fixed by rebuilding all the Slider inner-components, causing
a performance regression of 21%.

Slider>>extent: newExtent

— self updateSliderBounds
+ self removeAllMorphs; initializeSlider

Resetting the whole Ul is apparently perceived as an easier
solution than updating what is strictly necessary. This pattern
occurs 6 times involving 4 of the 7 applications that provide
a graphical user interface. Figure 4, right side, gives the
distribution of the performance variations due to the pattern.
One will notice that a performance regression due to P2 is
likely to be less severe than when due to P1.

P3: Introducing Object Proxy. The Adapter and Proxy are
two design patterns [5] commonly employed whenever mes-
sages received by an object have to be intercepted. The pur-
pose of such interception may be multiple: logging or check-
ing particular calls made on the wrapped object are frequent
situations.

The pattern introducing object proxy refers to the situation
when wrapping an object that receives a large number of
messages may introduce a negative performance regression.
Naturally, the regression depends on how costly the new
behavior added by the adapted / proxy is.

For instance, consider the following stream adapter added
in the XMLSupport application:

+XMLPeekableStreamAdapter>>next

+ | nextChar |

+ peekChar

+ ifNotNil: [nextChar := peekChar. peekChar := nil]
+ ifNil: [nextChar := stream atEnd

+ ifTrue: [nil]

+ ifFalse: [stream next]].

+ * nextChar.

The method next defined on the class XMLPeekableStream
Adapter adds extra checks before performing stream next.
Since a stream objects in XMLSupport receives a large
number of messages within the benchmarks, this change
causes a performance regression of 16%.

In total, this pattern occurred 4 times (10%) within the
software revisions we considered in our experiment.

P4: Regression in Dependent Project. Applications rarely
live on their own. Instead, an application often depends on
other applications, typically libraries and frameworks. Con-
sider a dependency A1 — A2 between two applications Al
and A2. Beside outsourcing functionalities, the dependencies
may result in a performance variation in A1l in case of source
code modification in A2.

The pattern regression in dependent project involves a
revision of a dependent application causing a performance
regression in the depending application.

For example, Nautilus, a code navigation browser, depends
on ClassOrganizer, a reflective API to query the structure of
classes and packages. Nautilus uses ClassOrganizer to let
users navigate through Pharo classes and packages. ClassOr-
ganizer went through a heavy refactoring. Although function-
alities were fully preserved, more resources are necessary,
thus negatively impacting Nautilus by 100%.

We have seen 4 occurrences of this pattern (10% of the
total of performance regressions).

P5: Heavy Object Construction. The purpose of a class
constructor is to ensure an object is properly defined when
created. For example, when creating an instance of a class
Point, the constructor of that class will initialize the x and y
variables to 0. In the case of the class Point, the initialization of
an object is pretty light since assigning 0 is a cheap operation.
However, the initialization may create other objects, which
themselves have to be initialized, thus creating of chain of
object initializations.

The pattern heavy object construction involves an expen-
sive chain of object initializations. Such a chain may be expen-
sive due to its length (e.g., initializing an object o,, requires
initializing 0,41 first) or its width (e.g., initializing an object
o requires creating and initializing objects 0;...0,,). Such a
chain of object initializations and creations chain may have a
negative performance impact, especially in the presence of a
high number of objects.

For example, consider the modification of the constructor
initialize of the class GETDataObject from the GraphET appli-
cation:

GETDataObject>>initialize
+ self roElement: ROElement new.

The revision of the constructor initialize introduces the
creation of an object ROElement, a complex object with 12
instance variables, each being initialized again, with large
objects. Since the class GETDataObject is central in GraphET

136

and massively instantiated by our benchmark, the constructor
revision introduced a performance regression of 11%.

This pattern occurred 3 times (7.5%) within our set of
identified performance regressions.

Outliers. We found 8 (20%) singular cases causing perfor-
mance regressions. No commonalities were identified be-
tween these regressions and seem to be due to adding new
features or improving existing features.

For instance, the caching support in Mondrian was causing
a 40% regression with the following method:

MOGraphElement>>resetMetricCaches
— cache := nil.
+ self removeAttributesMatching: 'cachex'

Since resetMetricCaches is frequently invoked, the incurred
regression is significant.

6. Categorizing Performance Improvements

From the 1,248 analyzed versions we found that 16 introduce
a negative performance variation, representing a performance
improvement. There are therefore more revisions that intro-
duce a performance regression than an improvement. This
section revises the source code revisions that lead to perfor-
mance improvements.

P6: Deleting Redundant Method Call. Removing an unnec-
essary computation is probably the most effective way to
improve performance.

The pattern deleting redundant method call identifies
source code revisions that remove redundant method calls.
We qualify a method call as redundant if it does an unneces-
sary computation. Deleting redundant method calls are likely
to improve the performance of a benchmark, especially when
such calls are heavily involved in the overall computation.

For example, consider the modification made in the
method nodes:forEach: in the Roassal application:

ROMondrianViewBuilder>>nodes: objects forEach: aBlock
nodes do: [:n |

self applyLayout.

I

The revision removes the applyLayout call, likely to be a
redundant message. In the new method version, the layout is
applied only once, after the graph has been properly defined.

We have counted 4 occurrences of this pattern in the 15
performance improvements we have identified.

P7: Cache Introduction. Preventing the same computation
to be realized more than once is typically done by caching the
first-time-computed result. Applying a memorization tech-
nique [19] under certain conditions eliminates this redun-
dancy.

The pattern cache introduction identifies source code revi-
sions that cache computed values, thus avoiding unnecessary
repetitive computation.

For example, an optimization was made in the NeoCSV ap-
plication by introducing a cache initialization in the peekChar
method. The cache is reset in nextChar:

+ NeoCSVReader>>peekChar

+ ~ charBuffer
+ ifNil: [charBuffer := readStream next |.
+ NeoCSVReader>>nextChar
~ charBuffer
ifNil: [readStream next]

ifNotNil: [| char |
char := charBuffer.

+
+
+
+
+ charBuffer := nil. ~

char]

This pattern occurred 3 times (19%) in the analyzed
software source code revisions.

P8: Conditional Statements Addition. Identifying a partic-
ular situation prior to carrying out a computation may be
effective in avoiding such computation.

The pattern conditional statements addition identifies a
revision that introduce a conditional statement to avoid un-
necessary computation. Such conditional statements usually
check for singular values such as an empty collection, a
negative numerical value or a null value.

For example, an early method exit, implemented using a
conditional statement was introduced in the method displayln:
in GraphET:

GETAbstractDiagram>>displayln: aView
self generateln: aView.

+ self hasValues ifFalse: [~ self].
self createAxis: aView.
self addInteractions

The condition simply checks on whether some values have
been added in an instance of the class GETAbstractDiagram. If
no value has been added then the method exits early, using
the instruction ~ self.

Interestingly, Jin et al. [8] present a case study and de-
scribe how a conditional break introduces a slowdown, be-
cause most of the time the condition was evaluated false in
their monitored situations. Our experiment indicates an oppo-
site result. Two occurrences of Pattern P8 have been identified
in our revisions.

P9: Improvement in Dependent Project. Similarly to the
Pattern P4 mentioned above, an application may depend on
another application, e.g., a library or a framework. A source
code revision in a dependent application may impact other
applications that depend on it.

The pattern improvement in dependent project refers to
the situation where an application A1 depends on application
A2 and A2 has been improved. Such situation may favor the
performance of Al.

137

For example, the Spec application depends on the Pharo
Kernel (i.e., essential classes including the class Object, the
collection classes and the elementary I/O APIs). One of
the benchmarks associated with Spec exhibited a shorter
execution time because Kernel has been improved.

This pattern occurred 2 times (13%) in the whole set of
revisions we analyzed.

Others. We found 5 singular program optimizations. These
optimizations are either related to the domain handled by
the application or are simply puntual optimizations. For
example, a revision in Roassal introduced an unnecessary
logging facility toward an external file, probably some left-
over from a debugging session. Removing this logging facility
contributed significantly to speeding up Roassal.

7. Threats to Validity and Discussion

Projects under Study. There is a potential project selection
bias in our study. Since we considered relatively large, multi-
authored, and relevant applications, we do not consider small
applications made by a restricted group of developers. Small
applications indeed constitute the majority of the project
hosted on the Pharo forges. For future work we will expand
our set of analyzed applications. Note that this bias is inherent
to most software analysis experiments.

Non-Exhaustive List of Patterns. The patterns we have iden-
tified are related to the domain handled by the considered
applications. Other patterns may be related to a domain not
covered by our experiment. For example, our benchmarks
do not involve a database and it has been shown that fre-
quently executed DB queries may introduce a performance
regression [14].

Identifying Variations. Our model to identify performance
variation is relatively simple, as indicated in Section 3.6
(Step S6). We currently compare a version v; with v;_1, its
immediate successor. However, it may be that the comparison
with v;_,, with @ > 1 would lead to a different set of
performance variations. Our future work will explore this
to increase the accuracy of our variation identification.

Outside the Pharo Ecosystem. This paper is voluntarily fo-
cused around the Pharo ecosystem. The relatively simple exe-
cution model of Pharo makes it possible to take care of all the
obvious external factors which could bias our measurement.
To have an indication on whether our findings are relevant for
a different language and execution environment, we crawled
over some bug repositories and searched for bug related to
performance. Mozilla reported performance issues related to
use of loops’ and excessive UI update'?. JUnit also exhibits
performance regression similar to the one we identified. It
noted that an excessive number of filtering over a collection

“https://bugzilla.mozilla.org/show_bug.cgi?id=540236
Ohttps://bugzilla.mozilla.org/show_bug.cgi?id=319739#c7

https://bugzilla.mozilla.org/show_bug.cgi?id=540236
https://bugzilla.mozilla.org/show_bug.cgi?id=319739#c7

causes a performance regression'!. MySql is also facing the
issue of “subquerying” over collections'? and excessive Ul

redraw!3.

8. Related Work

There have been a number of empirical studies over perfor-
mance bugs, and therefore related to our study.

Jin et al. [8] studied the root cause of 109 performance
bugs from five code bases (Apache, Chrome, GCC, Mozilla
and MySQL). They look for root-cause patterns among
performance bugs (i.e., skippable functions, uncoordinated
functions or synchronization issues). They propose a rule-
based performance-bug detection using rules implied by
patches to find unknown performance problems.

Nistor et al. [16] study performance and non-performance
bugs from three popular code bases: Eclipse JDT, Eclipse
SWT, and Mozilla. They describe how fixing a performance
bug could introduce a functional bug and how fixing perfor-
mance bugs are more difficult than functional bugs. Both
studies focus on how performance bugs are discovered, re-
ported, and fixed.

Zaman et al. [20] study the bug reports for performance
and non-performance bugs in Firefox and Chrome. They
studied how users perceive the bugs, how the bugs were
reported, what developers discussed about the bug causes
and the bug patches. Their study is similar to that of Nistor
et al. [15] but they goes further by analyzing additional
information for the bug reports.

Nguyen et al. [14] interviewed the performance engineers
responsible for an industrial software system, to understand
these regression-causes. The engineers noted that the same
regression-cause in different parts of the code will result in
similar values for the performance counters (i.e., signature)
as long as the regression causing code is inserted anywhere
along the same execution path. They propose the mining of
a regression-causes repository (where the results of perfor-
mance tests and causes of past regressions are stored) to assist
the performance team in identifying the regression-cause of
a newly-identified regression.

Huang et al. [7] conduct an empirical study on 100 ran-
domly selected real-world performance regression issues
from three widely used, open source software Mysql, Post-
gresql and Chrome. These issues have been collected from the
tracking system or mailing list of these projects. The authors
selected the issues for which the fixes and the responsible
change set can be found. They observe where the change
takes place (i.e., primitive function) and what is the impact of
the changes on the source code (i.e.,). Their rationale is that
program performance depends on how expensive an operation
is and how many times the operation gets executed. Based on

https://github.com/junit-team/junit/issues/38
2nttps://bugs.mysql.com/bug.php?id=47914
13 https://bugs.mysql.com/bug.php?id=33749

138

the insights from the study, they propose a performance risk
analysis design and implementation based on static analysis.

Most of the empirical studies were done over performance
bugs. These studies differ for our study in different aspects.
First, we focus our research on performance variations. We
analyze the performance evolution of a number of bench-
marks along software evolution, in this sense, we consider
performance drops and improvements that were not reported
as a bug or bug-fixed. Second, we contrast the performance
variations with the source code changes at fine levels of granu-
larity; Third, we describe how the source code changes affect
software performance. Four, our study consider a large variety
of applications and benchmarks.

9. Conclusions

Understanding how performance varies across multiple soft-
ware revisions is challenging due to several technical aspects.
We propose a methodology to face these challenges and re-
duce measurement bias.

We found out that, for our set of considered applications,
performance variation is largely affected by identified and
repetitive situations across application revisions, which vali-
dates our hypothesis, given in Section 1.

Our future work will extend our set of analyzed applica-
tions and generalize our approach to identify performance
variations. In addition, we will create strategies to statically
lookup source code changes to detect software versions that
could introduce a performance regression.

Acknowledgments

Juan Pablo Sandoval Alcocer is supported by a Ph.D.
scholarship from CONICYT and AGCI, Chile. CONICYT-
PCHA/Doctorado Nacional para extranjeros/2013-63130199.
We thank Yasett Acurana for her feedback on an early ver-
sion of the paper. We also thank the European Smalltalk User
Group (www.esug.org) for the sponsoring.

References

[1] Juan Pablo Sandoval Alcocer and Alexandre Bergel. Tracking
performance failures with rizel. In Proceedings of the 2013
International Workshop on Principles of Software Evolution,
IWPSE 2013, pages 38-42, New York, NY, USA, 2013. ACM.

[2] Alexandre Bergel. Counting messages as a proxy for average
execution time in pharo. In Proceedings of the 25th European
Conference on Object-Oriented Programming (ECOOP’11),
LNCS, pages 533-557. Springer-Verlag, July 2011.

[3] Stephen M. Blackburn, Robin Garner, Chris Hoffmann,
Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur,
Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovié,
Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The dacapo benchmarks: java benchmarking
development and analysis. In Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming

https://github.com/junit-team/junit/issues/38
https://bugs.mysql.com/bug.php?id=47914
https://bugs.mysql.com/bug.php?id=33749

systems, languages, and applications, OOPSLA 06, pages
169-190, New York, NY, USA, 2006. ACM.

[4] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary
Sevitsky, Patrick O’Sullivan, Trevor Parsons, and John Murphy.
Patterns of memory inefficiency. In Proceedings of the
25th European Conference on Object-oriented Programming,
ECOOP’11, pages 383-407, Berlin, Heidelberg, 2011.
Springer-Verlag.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Professional, Reading,
Mass., 1995.

[6] Andy Georges, Dries Buytaert, and Lieven Eeckhout.
Statistically rigorous java performance evaluation. In
Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and applications,
OOPSLA °07, pages 57-76, New York, NY, USA, 2007. ACM.

[7] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou.
Performance regression testing target prioritization via
performance risk analysis. In Proceedings of the 36th
International Conference on Software Engineering, ICSE
2014, pages 60-71, New York, NY, USA, 2014. ACM.

[8] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and
Shan Lu. Understanding and detecting real-world performance
bugs. SIGPLAN Not., 47(6):77-88, June 2012.

[9] Tomas Kalibera and Richard Jones. Rigorous benchmarking
in reasonable time. In Proceedings of the 2013 International
Symposium on Memory Management, ISMM °13, pages 63-74,
New York, NY, USA, 2013. ACM.

[10] Manny Lehman and Les Belady. Program Evolution:
Processes of Software Change. London Academic Press,
London, 1985.

[11] Ian Molyneaux. The Art of Application Performance Testing:
Help for Programmers and Quality Assurance. O’Reilly
Media, Inc., 1st edition, 2009.

[12] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and
Peter F. Sweeney. Producing wrong data without doing
anything obviously wrong! In Proceeding of the 14th
international conference on Architectural support for
programming languages and operating systems, ASPLOS
’09, pages 265-276, New York, NY, USA, 2009. ACM.

[13] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and
Peter F. Sweeney. Evaluating the accuracy of java profilers. In

139

Proceedings of the 31st conference on Programming language
design and implementation, PLDI 10, pages 187-197, New
York, NY, USA, 2010. ACM.

[14] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E. Hassan,
Mohamed Nasser, and Parminder Flora. An industrial case
study of automatically identifying performance regression-
causes. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages 232-241,
New York, NY, USA, 2014. ACM.

[15] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting,
and fixing performance bugs. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR
’13, pages 237-246, Piscataway, NJ, USA, 2013. IEEE Press.

[16] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu.
Toddler: Detecting performance problems via similar memory-
access patterns. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 562—
571, Piscataway, NJ, USA, 2013. IEEE Press.

[17] Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon:
Adaptive selection of collections. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI *09, pages 408—418, New
York, NY, USA, 2009. ACM.

[18] Bastian Steinert, Damien Cassou, and Robert Hirschfeld.
Coexist: overcoming aversion to change. In Proceedings of
the 8th symposium on Dynamic languages, DLS *12, pages

107-118, New York, NY, USA, 2012. ACM.

Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge.
Dynamic purity analysis for java programs. In Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering (PASTE ’07), pages
75-82, New York, NY, USA, 2007. ACM.

[20] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. A
qualitative study on performance bugs. In Proceedings
of the 9th IEEE Working Conference on Mining Software
Repositories, MSR 12, pages 199-208, Piscataway, NJ, USA,
2012. IEEE Press.

(19]

[21] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain,
and Jong-Deok Choi. Accurate, efficient, and adaptive
calling context profiling. In Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI *06, pages 263-271, New York, NY,
USA, 2006. ACM.

	Introduction
	Imperceptible Performance Degradation
	Methodology
	Challenges
	Workflow
	Projects under Study (Step S1)
	Identifying Benchmarks (Step S3)
	Executing the Benchmarks (Step S4)
	Computing Performance Variation (Step S6)
	Categorizing Performance Variations (Step S9)

	Overall Results
	Categorizing Performance Regressions
	Categorizing Performance Improvements
	Threats to Validity and Discussion
	Related Work
	Conclusions

