
Reproducing Bugs in Video Games using Genetic
Algorithms

Tomás Ahumada
Department of Computer Science (DCC)

University of Chile
Santiago, Chile

tomyahu@gmail.com

Alexandre Bergel
Department of Computer Science (DCC)

University of Chile
Santiago, Chile
http://bergel.eu

Abstract—Video games are usually manually tested by a
dedicated team. As such, testing is an expensive activity, both
financial and emotional as most of the testing is mostly carried
out before a release.

This paper proposes a technique based on using Genetic
Algorithm (GA) to reproduce bugs in video games. It consists
in searching for a sequence of joystick and keyboard actions
that lead to a faulty state of the game. We successfully applied
our technique on two different video games, thus suggesting that
using GA is a viable technique to reproduce bugs in video games.

Index Terms—Genetic Algorithms, Video Games, Testing

I. INTRODUCTION

Modern video games are complex graphical software appli-
cations. These pieces of software are known to be difficult to
test, because of their graphical and real-time aspect. As such,
video games are difficult to automatically test by means of a
dedicated testing framework.

Traditional methodologies for testing software usually cover
small problems, consisting of uninterrupted sequences of ac-
tions. In the case of videogames, some examples of these small
problems can be equipping an item, attacking an enemy or
jumping on a specific type of surface.

However, many errors and glitches in games can only occur
over a large number of frames. Intuitively, these software
anomalies are harder to detect. These glitches can include
unexpected physics behavior, getting out of the playable area
of a level, frame rate drops and more. The videogame industry
is facing this problem by having intense testing phases, usually
involving human players.

Problem description. There are instances when a tester finds a
bug while playing the game, without being able to reproduce it.
Being able to accurately reproduce a bug is often an essential
step to fixing it. This is the scope of this paper, proposing a
technique to reproduce bugs in video games.

Objective. This paper demonstrates that genetic algorithms are
effective at finding a sequence of input commands that lead
to a faulty or erroneous state of a video game. Such input
commands are a valuable asset when communicating bugs to a
team of software engineers, who are in charge of implementing

and maintaining a video game. There has been a small amount
of studies that apply genetic algorithms to videogame testing,
one of those studies is ICARUS [3].

Methodology. We employ an implementation of a genetic
algorithm in Python in order to generate input commands
for games written in the LÖVE framework [2], a popular
framework to build video games in Lua [1].

We use our approach to identify bugs in the games Journey
to the Center of Hawkthorn and Zabuyaki. Our findings were
shared with the authors of these games.

Contributions. The contributions made in this paper are:
• Applying and evaluating genetic algorithm as a method

for searching for input sequences that cause an abnormal
behavior or resource consumption in games;

• Exploring and specifying the way input sequences may
be encoded with genetic algorithms.

Our results and claims are accompanied by software arti-
facts supported in this paper, which are:

• A wrapper of the LÖVE framework for running prede-
fined input sequences over games made in LÖVE.

• A piece of software that executes genetic algorithms over
this wrapper, in order to generate input sequences that
maximize a fitness function.

Outline. The paper is structured as follows: Section II presents
the essence of genetic algorithms as a background; Section III
describes our techniques to search for input sequences in video
games; Section IV presents some case studies; Section V
describes the experiments we have conducted to address our
case studies; Section VI concludes and outlines future work.

II. GENETIC ALGORITHMS OVERVIEW

Genetic Algorithms (or GA for short) is a kind of op-
timization algorithm that is based on Darwinian Evolution
and Natural Selection. GA operates by creating a number of
random inputs for a function to be optimized. This technique
evaluates each possible solution and combines relevant candi-
date solutions in order to create a new set of possible candidate
solutions. This process is repeated until a stop condition is met
and the best solution generated is returned as the output of the
algorithm.978-1-7281-6147-1/20/$31.00 ©2019 IEEE

A. Terminology

A fitness function is defined as a function f : I → R where
I is the set of possible solutions for the problem to solve.
This function is meant to be optimized by the GA, and it is
used to evaluate all possible candidate solutions. Thus, this
function is designed to quantify how close a solution is to
the optimal solution, or how good the solution is, given the
problem specifications.

An individual is defined as a possible solution x ∈ I . Each
individual is composed of a set of gene values, which represent
unitary pieces of information about the individual. An individ-
ual can be seen as a vector x = (x0, ...xn) ∈ I = I0 × ...In
where xi ∈ Ii is a gene value. A set of individuals is called a
population.

A generation is defined as the creation of a new population
in the genetic algorithm. At the beginning of the GA’s execu-
tion, a set of individuals is created at random and it is defined
as Generation 1. Generation k+1 is defined as the generation
that results when mixing the selected set of individuals from
generation k.

Crossover is the operation representing the combination of
two individuals to create a new individual. This operation is
performed by combining the genes of two individuals x1, x2 ∈
I on the current generation called the parents. There are many
ways to express a crossover operation but one of the most
common is Single Point Crossover. In this algorithm, a random
number r ∈ 1, ..., n is selected; let x, y ∈ I be the parents of
the new individual z ∈ I . Let a[i] be the i’th gene of individual
a, then z’s genes are defined as follows:

z[i] =

{
x[i] i < r
y[i] i ≥ r

There is another operation that occurs during the creation
of a new generation, called mutation. Mutation consists in
altering an individual by replacing a gene value with another
value. The mutation operation aims to bring diversity in the
population.

Another crucial aspect of GA is selecting the individuals for
a crossover operation. The selection consists in selecting two
individuals from a population in order to apply the crossover
and the mutation. Selection algorithms usually have a chance
of selecting almost any individual of a generation. However
the individuals with more chances to be selected are the ones
with the best fitness.

III. SEARCHING FOR INPUT SEQUENCES

This paper is about evaluating the use of Genetic Algorithms
(GA) to obtain information about bugs in video games. The
essence of our approach is to use GA to search for a sequence
of input values that leads to a faulty state of the game.
Typically, each input value represents a simulated joystick
action or a keystroke.

A. Modeling the Game Execution

Injecting computed inputs. To apply genetic algorithms to
search for a particular input sequence, our fitness function

involves injecting some computed inputs in the games. As
such, the LÖVE engine is wrapped to redirect computed inputs
to the game. These artificial inputs can be injected in any frame
during execution.
Avoiding randomness. The game must be completely deter-
ministic in order to effectively apply genetic algorithms. As
such, feeding a sequence of generated inputs to two instances
of the game must lead to exactly the very same state. When
applied to GA, evaluating the fitness function twice for the
same input values should result in the exact same fitness. This
is an important requirement to have a possible convergence of
the genetic algorithm.

Random number generators are used in the LÖVE engine
and Lua’s mathematical library. Our wrapper sets an arbitrary
seed to guarantee the same sequence of pseudo-random values.
Targeting and speeding up the search. The genetic algorithm
searches for an input sequence that leads to a game failure.
To significantly improve the search, some indications may be
manually provided to make the algorithm focus on a restricted
portion of the game logic. In particular, the wrapper takes the
following inputs when run to target the search:

1) Frames to skip – This parameter represents a number
of frames at the start of the game execution that are not
going to be taken into account for the fitness computation.
Additionally, an input sequence can be provided to be
run during these frames. This is done in order to skip
uninteresting parts of the game like menu navigation,
tutorials or levels.

2) Frames to test – The search immediately begins after
having skipped the frames described above. The search
has to focus on the relevant portion of the game, measured
in frames. The value frames to test is the amount of
frames the sequences generated by the GA have to
reproduce the target behavior. After that, the game is
aborted and the fitness is computed.

Our Wrapper first takes an input sequence and runs it for a
number of frames given (the frames to skip), where the results
will be ignored for fitness computation. When running the
genetic algorithm every individual performs the exact same
inputs during these frames, so the data obtained in this period
is not important as it is the same for every individual in the
GA.

After running the frames to skip, the fitness computation
operates on the subsequent frames (the frames to test). An
example of use is to perform a joystick or keyboard input
sequence to skip menus and tutorials of a game. The value
for the frames to skip variable is usually the length of the
related input sequence in frames. For the value of the frames
to test variable, it depends heavily on the experiment to do.
Finally the resulting fitness alongside some execution data will
be returned as a string that represents a dictionary in the JSON
format.

B. Input Sequence Individual Encodings
We refer to an input as a signal given by a joystick or

keyboard, which can represent a key press for example. Input

(up, 6),(no input, 4),(down,8)

Fig. 1. Example of the genes of an Ephemeral Key Individual.

sequences can be represented in a genetic algorithm in many
different ways. This section describes the two encodings we
have adopted after researching and iterating on many possible
encodings.

Both of these encodings are composed of genes with the
same structure. This gene type is called Ephemeral Key
Gene, a gene that represents a tuple with an input type and the
number of consecutive frames the input is active (represented
as a whole number).

The first individual encoding is called Ephemeral Key
Individual and consists of an ordered list of ephemeral key
genes. The inputs of the genes of this list are sequentially
injected in the game from frame 0 and onward. When a gene
of this list stops being active, the next gene is activated and
so on until every gene in the list was active at some point.

The individual in figure 1 represents an input sequence that
activates the up joystick action for six frames (from Frame 1
to Frame 6), then no input is provided during the 4 subsequent
frames (frames 7 to 10) and finally the down joystick action is
performed during the 8 subsequent frames (frames 11 to 18).
This simple encoding considers that only one input is provided
at a given frame. However, many games expect more than one
action to be performed at the same time (e.g., up and right
to jump toward the right hand-side), which motivates for a
second input encoding.

The second and more complex individual encoding is called
Multi Ephemeral Key Individual, and unlike the first one, it
can represent input sequences where many inputs are active at
the same time. This encoding consists of a number of ordered
groups of ephemeral key genes. These groups have in common
that the sum of the frame duration of all their respective genes
is the same.

Each one of these groups represents an input sequence of
only one type of input. The input sequence represented by
the encoding is the result of playing all the group’s input
sequences at the same time. Thus, to understand the complete
input sequence it is only necessary to understand the input
sequence generated by one of the groups.

These groups work in a similar manner as Ephemeral Key
Individuals, but each time there is a change of active gene, the
input is toggled (is activated if it was inactive at the time, and
deactivated otherwise). Consider a group with the up input,
whose sequence of genes is given by Figure 2.

The up input will start inactive, then after each gene finishes,
the up input will be toggled. In this case the input will remain
inactive for the first five frames of execution (frames 1 to 5),
then it will be activated for three frames (frames 6 to 8); it
will remain inactive for two more frames (frames 9 and 10)
before being activated for eight frames at the end (frames 11
to 18).

A complete Multi Ephemeral Key Individual is shown in
figure 3. In this figure, the first line represents a group for the

(up, 5),(up, 3),(up, 2),(up, 8)

Fig. 2. Example of a sequence of Ephemeral Key Genes from a group
of a Multi Ephemeral Key Individual. In this case the input of the group
corresponds to the up input.

up input, and the second line represents a group for the right
input. This individual represents an input sequence that runs
the sequences represented by both of these groups at the same
time. By analyzing this sequence as with the one in figure 2,
it can be observed that in frames 6 to 8 both the up and right
inputs will be active at the same time. This is because the up
input is active from frames 6 to 8, and the right input is active
from frames 4 to 15.

(up, 5),(up, 3),(up, 2),(up, 8)
(right, 3),(right, 12),(right, 3)

Fig. 3. Example of a complete Multi Ephemeral Key Individual.

C. Encoding Mutation and Crossover

For performing crossover for the Multi Ephemeral Key
Individuals encoding a variation of Single Point Crossover was
designed. A random frame mark is selected during execution
and the new individual is structured so it behaves in the same
way as the first parent before the mark, and then behaves the
same as the second parent after it (Figure 4).

For performing mutation, a random gene is selected and the
length of its input is varied in a small amount of frames (a
maximum of 10). After performing mutation, it is important to
make sure that the sequence from the group selected lasts the
same amount of frames as before; if the sequence lasts less
than before, the last gene is extended. And if it lasts more
than before, the sequence is cropped so it retains its original
length.

IV. CASE STUDIES

We applied genetic algorithms to reproduce bugs in two
games: Journey to the Center of Hawkthorn 1, a platformer
RPG (will be referred as Hawkthorn in the remaining of
the paper); and Zabuyaki 2, a side-scrolling beat’em up.
Hawkthorn was selected because it is an open source game
that has public issues on GitHub. The game was developed
in 4 years, from 2012 to mid 2016, it has 59 contributors on
GitHub, and has more than 5,000 commits.

1https://projecthawkthorne.com/
2https://www.zabuyaki.com/

Fig. 4. A visualization of crossover between two Multi Ephemeral Key
Individuals.

https://projecthawkthorne.com/
https://www.zabuyaki.com/

The first issue tackled was a glitch that allowed the player
to go inside the roofs of some levels, called Issue #2456 3.
What was known of the bug was that it can be performed by
running to a place the player can crawl under, crouch briefly
and attacking when coming out of crouch. It was discovered by
github user LoubiTek in June 2015 and the way of reproducing
it was found by github user niamu that same month.

Even though there is a way of reproducing the bug, more
accurate details are unknown; like the frame window for
reproducing it for example.

Zabuyaki is also an open source game in GitHub. Develop-
ment in this game started mid 2016 and still continues at the
time of writing this paper. The development team consists of 4
people and the repository has more than 6,000 commits. The
game currently has two complete playable characters, Rick
and Chai.

After contacting the developers, two issues were brought
to the table, named by the developers as the D545 and D694
Tasks. The first task was about a two-part move of a playable
character, Chai’s special dash. The second task consisted of
performing combos with both finished characters.

The D545 Task’s problem is that sometimes when perform-
ing Chai’s two-part moves, the first part will trigger and the
second part will not. Another problem related to this task is
that sometimes when performing the moves, the second part
will trigger without the first part landing. These issues were
last encountered in August 2018, and the developers were
unsure if they still occur.

The D694 Task’s problem is that when performing specific
combos with Chai and Rick, the last move of the combo
sometimes does not hit or do any damage. In a video sent
by the developers portraying the issue it could be observed
that the hitboxes of the move seemed to hit the target but no
damage was done. The combos in particular are the following:

• Rick’s Dash Attack Combo: combo1 → combo2 →
dashAttack

• Chai’s Dash Attack Combo: combo1 → combo2 →
dashAttack

• Rick’s Offensive Special Combo: combo1 →
forwardCombo2→ forwardCombo3→ offensive Special

In every experiment in this section the genetic algorithm
tested 30 generations with a population of 100 individuals,
unless specified otherwise. Additionally, in every experiment
we used Multi Ephemeral Key Individuals, as all the issues
tackled required simultaneous inputs at some point.

V. EXPERIMENTS

A. Hawkthorn: Issue #2456

There is a small amount of levels in the game where it
is necessary to crawl to navigate. From those, there is an
even smaller amount that are designed as tight spaces which
is where this issue is said to occur. Three of these instances

3https://github.com/hawkthorne/hawkthorne-journey/issues/2456

fitness =
∑n

f=1 k
f df

Fig. 5. Fitness function for reproducing Issue #2456 in Journey to the Center
of Hawkthorn. n represents the frames to test, k is a constant value equal to
0.9954 and df is the distance between the player and the position that it has
to get to on frame f . The k value between 0 and 1 defined as 0.9954 for the
experiments.

were found in the game: one in the forest level, other in the
black-caverns-2 level and one final in the vents-2 level.

The instance in the forest level consists of a short space
where the player has to crawl to pass in a small cave. The
instance in the black-caverns-2 level consists of a moving
platform that moves through a small space, the idea is to
crouch in the moving platform to pass. Finally the instance
in the level vents-2 is very similar to the instance in forest,
but the roof of the crawling space is connected to the ceiling
of the level.

In order to reproduce this glitch, we designed a fitness
function that rewards an individual for going as close to a
defined in-game position as possible (Figure 5). For every
site, a specific spot inside the wall over the crouch-able space
was selected as the fitness function target position. The fitness
function used is designed like this so individuals in the first
generations try to get as close as possible at the beginning of
the execution, and in later generations the last part of execution
is optimized.

For these experiments some inputs were restricted as they
represented noise to find the target behavior. The inputs
enabled were the ones related to moving, jumping, crouching
and attacking. The amount of frames to test an individual was
set to 500 as it is known that it is possible to produce this
issue in a fraction of this amount of frames.

For the second site, an input sequence was developed so
individuals wait in the moving platform for a bit before starting
to act. This is done so the genetic algorithm does not have to
also learn to keep itself in the moving platform for some time.
This sequence took 125 frames, so the frames to test were set
to 375 frames in this particular case.

In the first site the glitch could not be reproduced, the ge-
netic algorithm instead produced individuals that got as close
as possible by crawling near the position. In the second site,
the glitch was produced in Generation 1, the next generations
the genetic algorithm tended to produce individuals that stayed
as close as possible to the exact point inside the wall. For
the final site, the genetic algorithm performed the glitch in
Generation 4, and the rest of the generations showed a similar
evolution that the second site experiment.

By analyzing the data from the experiments it was discov-
ered that in site 2, the resulting individuals crouched, attacked,
and after attacking, came out of crouch. In site 3 the
produced individuals had to do some preparation to set up
the glitch. After that, they performed the same actions as the
individuals in site 2 to get to the target position.

After manually reducing the resulting output sequence from
site 2, an input sequence of three inputs that produces the
glitch was created. This sequence consists in pressing the

https://github.com/hawkthorne/hawkthorne-journey/issues/2456

fitness = d
8 + ds + 10 dsl2(1 + 9 (dsl2 − dsl))

Fig. 6. No-Hit Fitness function. d represents the number of dash attacks
performed. ds the number of special dash attacks performed. dsl the number
of special dash attacks that landed. And dsl2 the number of times the second
part of the special attack was triggered.

fitness = d
8 + ds + 10 dsl(1 + h0)

Fig. 7. No-Damage Fitness function. d represents the number of dash attacks
performed. ds the number of special dash attacks performed. dsl the number
of special dash attacks that landed. And h0 the number of frames the attack
did 0 damage.

crouch button, then when the player character gets below the
wall, pressing the attack button and before one third of a
second passes, releasing the crouch button. The glitch causes
the player character to go up until its not colliding into a
collision box, which gets them inside the wall.

The resulting individuals were able to perform the glitch in
two of the three sites. More information about the glitch was
found, apparently when the player character is in crouch state
and attacks, if the crouch button is released the player stands
up without checking if it can stand up. More so, information
on the frame window for releasing the crouch button was
discovered.

The results do not imply that the glitch can not be performed
on the first site though. It is believed that the glitch can
be performed the same way as in site 3. The effects of the
glitch will be different in site 1, because in site 3 the wall is
connected to the roof, which is not true in site 1. By trying
to perform the glitch in site 1 it is expected that the player
character gets propelled upwards until it no longer collides
with a wall.

B. Zabuyaki Task D545 Point 1 Chai’s Special Dash

As mentioned before, this issue refers to when Chai’s
Special Dash’s first part does not land, but the second part
is triggered anyways.

Two fitness functions were designed in order to reproduce
the error. As the target behavior is rather complex, the func-
tions were designed so doing other similar moves also rewards
an individual in a small manner. The first fitness function
will be called No-Hit Fitness Function and can be observed
in Figure 6. The second fitness function will be called No-
Damage Fitness Function and it is defined in Figure 7.

Both functions were designed so individuals learn in a step-
wise fashion how to land a special dash on an enemy. That is
the reason behind rewarding them for performing dash attacks
and special dash attacks without landing them. However the
best way to obtain a high fitness value is to perform the move
itself and the issue.

The No-Damage Fitness Function was designed based on
the theory that the issue as observed in 2018 was that the
special dash landed but then it did not produce any damage
as the enemy may have moved out of the way. Once a
special dash has landed, the genetic algorithm will attempt to

fitness = d
8 + ds + 10 dsl(1 + 9 (dsl1 − ds2))

Fig. 8. No-Second Fitness function. d represents the number of dash attacks
performed. ds the number of special dash attacks performed. dsl the number
of special dash attacks that landed. And dsl2 the number of times the second
part of the special attack was triggered.

minimize the amount of times the player character damages
an enemy with the first part of the move.

For these experiments the amount of frames to test was
set to 800 and the amount of generations to test was set to
20. Additionally, some parameters for individual initialization
were set so individuals with many short inputs are more
common than individuals with a few long ones.

In both experiments the genetic algorithm was able to
perform the special dash attack on enemies without being
able to fully reproduce the issue (a part of the bug was
not reproduced). The No-Hits Fitness Function’s experiments,
produced individuals that landed up to three special dash
attacks. For the No-Damage Fitness Function’s experiments,
the individuals managed to damage the enemy only once with
the first part of the move.

C. Zabuyaki Task D545 Point 2 Chai’s Special Dash

The objective of the experiments in this section is to perform
and land the first part of Chai’s Special Dash (on an enemy)
without triggering the second part. Similar to Point 1 the
function designed for this task rewards and individual in a
small manner for performing similar moves as the target move
while awarding a high fitness for performing the issue. This
function will be called No-Second Fitness Function and its
definition can be observed in Figure 8.

This fitness function is almost the same as the No-Hit
Fitness Function from Point 1. The difference is in the last
term of the function where it greatly rewards an individual for
performing a special dash and even more for performing the
issue.

These experiments also used 800 frames and 20 generations.
The individuals initialization variables were set in the same
manner as the previous experiment.

In this experiment, the GA was able to reproduce the
objective behavior by generation 8. The first part of the move
is an aerial kick, and the player character descends while
performing it. In the execution of the genetic algorithm the
player character touched the ground while doing this part and
the rest of the move was not performed after it.

After sending a recording of this behavior to the developers,
they confirmed that it corresponds to the behavior they were
looking for. The use of the input sequence file created by
the genetic algorithm led to the confirmation of a theory the
developers had. This theory was “if the player touches the
ground while performing the first part of the move, the second
part will be cancelled”.

D. Zabuyaki Task D694 Rick’s Dash Attack Combo

As mentioned earlier the D694 Issue refers to combos
performed by the finished characters where the last part of the

fitness = k (0.1 c1 + c2 +
cda

1+dda
)

Fig. 9. Rick’s Dash Attack Fitness function. If the individual respects the
constraints defined by the fitness function, k has the value 1, otherwise it
becomes 0. c1 takes the value of 1 if the first move of the combo was
performed during execution and 0 otherwise. c2 takes the value of 1 if the first
and second moves of the combo was performed as a combo during execution
and 0 otherwise. cda takes the value of 1 if the objective combo is performed
during execution and 0 otherwise. dda is the total damaged done by the dash
attack at the end of a combo.

combo does not hit. The first combo to do experimentation on
is Rick’s Dash Attack Combo.

For this task, we asked the developers for debug tools they
had created to visualize hitboxes during playtime. This is
because, as mentioned before, in a video sent by the developers
the hitboxes seemed to hit when this issue happened. So it was
necessary to observe the moves’ hitboxes in order to verify
whether the issues occurs. A new fitness function also had to
be developed in order to reproduce this issue.

As the issue involves a complex behavior, it was not clear
at the beginning of the experiments how to design a fitness
function for this problem. The game does not keep track of
combos internally, so detecting combos had to be done by the
fitness function created. For this, a heuristic was developed
in order to define what is a combo and when is a combo
occurring.

A combo is defined as a sequence of moves executed
sequentially where every move lands on a single target.
Additionally, a sequence of moves will not be considered a
combo if between each move’s triggering times there are more
than mf frames (where the default value for mf is 10).

The fitness function is defined based on milestones, reward-
ing individuals more as they get more steps of the combo. The
initial number of generations set was 50, but was then reduced
to 20 because most experiments tended to converge in the first
generations. Also, the number of frames tested was set to 400,
and the individuals initialization parameters were set so initial
individuals have somewhat longer inputs than in the previous
experiments.

We did many experiments in order to iterate on the fitness
function’s methods of parameter computation, constraints, mf

value, etc. During these experiments, the constraints “the
individual must not kill an enemy” and “the individual can
not turn around during the execution” were added. After 20
experiments, the issue was not reproduced.

In the last experiments the best individuals were able to
reproduce the combo. In some experiments with an mf value
of 20 the individuals were able to manipulate the AI to move
out of the way of the combo. As there is not a simple constraint
that can be added to the fitness function in order to avoid this
behavior, no more experiments were done for this instance of
the issue.

E. Zabuyaki Task D694 Chai’s Dash Attack Combo

This instance of the issue is about the same combo as before
but executed as the character Chai.

As Rick’s Dash Attack Fitness Function (Figure 9) produced
individuals that reproduced the combo, the fitness function was
maintained by changing the way it computed the parameters
for the move. This included modifying the c1, c2, cda and
dda to detect Chai’s moves instead of Rick’s. No further
modifications were made to the fitness function for these
experiments. For these experiments, three values for mf were
used: 10, 15 and 20. The number of generations was set to 50
and the frames to test were increased to 500.

For the first two values of mf , the combo was performed
without reproducing the issue, for the last value the issue
was reproduced. In this last experiment, the genetic algorithm
performed a different combo from the objective combo in
order to reproduce the issue. The combo performed was:

• combo1 → combo2 → combo3Forward → dashAttack
The window between the two last moves of the original

combo allowed the genetic algorithm to perform an extra move
between them, producing the issue. The combo is performed
on various enemies at once, all the three first moves of the new
combo hit and the last one did not hit, despite the hitboxes
overlap.

The developers were contacted about the reproduction of
the issue and confirmed again that the behavior produced was
the one they were looking for. Through analysis on the input
sequence produced, it was determined that the bug was directly
linked to the timing of the moves and it did not show signs of
being connected to the distance from the target. Because the
issue was reproduced, no more further experimentation was
made with other moves.

VI. CONCLUSIONS AND FUTURE WORK

The technique used in this paper for generating input se-
quences using genetic algorithms can be used to generate spe-
cific target behaviors in games. Based on the results obtained
in the experiments, the difficulty of using this technique is to
design a fitness function appropriate for generating behaviors.
On this topic, fitness functions based on milestones like the
ones used in Zabuyaki provide a structure on how to design
them for behaviors that can be divided in steps.

A future research opportunity can be to experiment with
the encodings developed and their crossover and mutation
functions. The encodings used in the paper are internally
structured as time-lapses. It could be interesting to see the
development of effective encodings that do not have this
structure.

REFERENCES

[1] P Christensson. Lua definition. https://techterms.com/definition/lua.
Accessed: 2020-03-25.

[2] Löve (game engine). Löve (game engine) - wikipedia. https://en.
wikipedia.org/wiki/L%C3%B6ve (game engine). Accessed: 2020-03-25.

[3] Johannes Pfau, Jan Smeddinck, and Rainer Malaka. Intelligent completion
of adventure riddles via unsupervised solving. In Automated Game Testing
with ICARUS, pages 153–164, 10 2017.

https://techterms.com/definition/lua
https://en.wikipedia.org/wiki/L%C3%B6ve_(game_engine)
https://en.wikipedia.org/wiki/L%C3%B6ve_(game_engine)

