
Journal of Computer Languages 78 (2024) 101255

A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

A test amplification bot for Pharo/Smalltalk
Mehrdad Abdi a,∗, Henrique Rocha b, Alexandre Bergel c, Serge Demeyer d

a Nokia Bell NV, Antwerp, Belgium
b Loyola University Maryland, Baltimore, MD, USA
c RelationalAI, Switzerland
d University of Antwerp, Antwerp, Belgium

A R T I C L E I N F O

Dataset link: https://github.com/hscrocha/Test
AmplificationBotReproductionPackage

Keywords:
Test amplification
Mutation testing
Continuous integration
Crash recovery
Pharo smalltalk

A B S T R A C T

Test amplification exploits the knowledge embedded in an existing test suite to strengthen it. A typical test
amplification technique transforms the initial tests into additional test methods that increase the mutation
coverage. Although past research demonstrated the benefits, additional steps need to be taken to incorporate
test amplifiers in the everyday workflow of developers. This paper describes a proof-of-concept bot integrating
Small-Amp with GitHub-Actions. The bot decides for itself which tests to amplify and does so within a limited
time budget. To integrate the bot into the GitHub-Actions workflow, we incorporate three special-purpose
features: (i) prioritization (to fit the process within a given time budget), (ii) sharding (to split lengthy tests
into smaller chunks), and (iii) sandboxing (to make the amplifier crash-resilient). We evaluate our approach by
installing the proof-of-concept extension of Small-Amp on five open-source projects deployed on GitHub. Our
results show that a test amplification bot is feasible at a project level by integrating it into the build system.
Moreover, we quantify the impact of prioritization, sharding, and sandboxing so that other test amplifiers
may benefit from these special-purpose features. Our proof-of-concept demonstrates that the entry barrier for
adopting test amplification can be significantly lowered.
1. Introduction

Unit testing is writing small pieces of executable code to exercise
the program’s units and ensure they work as intended. Even though
writing these unit tests is initially a tedious process, it prevents the
system under test from regressing in the long term. A common way
to evaluate the strength of a test suite is to measure code coverage
or mutation coverage [1]. Since manually covering all corner cases of
a program is a challenging task, automated test generation [2–4] and
test amplification [5–11] tools were investigated to create stronger test
suites. These tools analyze the program under test and produce new
test methods that permanently increase coverage if merged into the
codebase.

Small-Amp [12] is the state-of-the-art test amplification tool in the
Pharo/Smalltalk ecosystem. It extends DSpot (see [5]) by bringing test
amplification to dynamically typed languages. Both tools work as a rec-
ommender system that synthesizes new test methods and presents them
to developers, which then decide whether these tests are worthwhile to
be merged into the codebase. Qualitative studies on DSpot and Small-
Amp illustrate that developers value the generated tests and accept the
corresponding pull requests [6,12].

∗ Corresponding author.
E-mail addresses: newmrd@gmail.com (M. Abdi), henrique.rocha@gmail.com (H. Rocha), alexandre.bergel@me.com (A. Bergel),

serge.demeyer@uantwerpen.be (S. Demeyer).

Despite the promising results of test amplification tools, their prac-
tical application is still questionable. Past research shows that test
amplification tools are cumbersome [13]. Not only are they complex
and hard to configure, but their execution time is unpredictable and
sometimes even unacceptable. For instance, considering test amplifiers
employing mutation testing, the amplification of some test classes
requires 5+ hours in DSpot [6], 5+ hours in DCI [7], 2+ hours in
Small-Amp [12], and 3+ hours in AmPyfier [11].

⇒ Although test amplification tools emerged to support developers, the
complexity and long execution times hinder their adoption.

Brandt and Zaidman [14] employ a lighter version of DSpot in
an IDE and introduce developer-centric test amplification. Because of
the time cost consideration, they restrict test amplification to increase
the instruction coverage and skip amplifying the mutation coverage.
This confirms that developers’ workstations are unsuitable for com-
prehensive mutation-based test generation: it is impossible to provide
instantaneous feedback.

⇒ Executing mutation-based test amplifiers on a developer workstation
is seldom feasible due to the computational overhead.
vailable online 11 December 2023
590-1184/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cola.2023.101255
Received 11 September 2023; Received in revised form 20 November 2023; Accept
ed 4 December 2023

https://www.elsevier.com/locate/cola
https://www.elsevier.com/locate/cola
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
mailto:newmrd@gmail.com
mailto:henrique.rocha@gmail.com
mailto:alexandre.bergel@me.com
mailto:serge.demeyer@uantwerpen.be
https://doi.org/10.1016/j.cola.2023.101255
https://doi.org/10.1016/j.cola.2023.101255
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101255&domain=pdf

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

f
a
l

i
r

t

2

a
a
o

In contrast, the work by Campos et al. [15] and Danglot et al. [7]
employ continuous integration servers to exploit automated tests. The
ormer integrates EvoSuite [2] (a test generation tool for Java) within

continuous integration setting to optimize the test generation. The
atter runs a variation of DSpot (named DCI) to detect the behavioral

changes on each commit in continuous integration.

⇒ Continuous integration servers, running on powerful servers configured
in build farms, open up possibilities for improved test synthesis.

A long-term possibility is to delegate the tedious task to a software
engineering bot. Following this vision, the bot autonomously amplifies
selected tests, integrates the synthesized tests into a separate branch,
and, upon successful completion, opens a pull request to strengthen the
test suite on the main branch. This entire process requires no manual
intervention from a software engineer. Subsequent code reviews treat
the pull request with the strengthened test suite just like any other
submitted by a human team member.

⇒ The ultimate vision for test synthesis in the context of GitHub-Actions
is a test amplification bot that opens pull requests for autonomously
strengthening the test suite.

One issue preventing fully autonomous test synthesis is that muta-
tions in the code may result in system crashes [10]. Especially in live
systems such as Pharo, system crashes corrupt the system image beyond
repair. If a crash happens, the system must revert back to a state where
the system is known to be pure.

⇒ A crash-resilient test synthesis process is a necessary prerequisite for
a test amplification bot.

In this paper, we explore the feasibility of a test amplification
bot. We present a proof-of-concept tool that integrates Small-Amp with
GitHub-Actions to automatically strengthen the existing test suite within
a limited time budget. To this end, our proof-of-concept incorporates
three special-purpose features:

∙ (i) prioritization (to fit the process within a given time budget),
∙ (ii) sharding (to split lengthy tests into smaller chunks),
∙ (iii) and sandboxing (to make the amplifier crash-resilient).

We evaluated our approach by installing the proof-of-concept ex-
tension of Small-Amp on five open-source Pharo projects deployed on
GitHub. Our results show that autonomous test amplification is feasible
at a project level by integrating it into the build system. Moreover, we
quantify the impact of sharding, prioritization, and sandboxing so that
other test amplifiers may benefit from these special-purpose features.
Our experiments show that prioritization has better performance (up
to a 34% increase), crashes occurred in about 17% of the cases, and
are restored successfully by the sandboxing mechanism, and sharding
allowed for large classes to fit into our time budget but came at a cost
of 30% more duplicated mutants.1 Additionally, our new time budget-
aware process was able to finish the amplification in an acceptable
period of 30 to 90 min.

The remainder of the paper is organized as follows. Section 2
provides the necessary background to understand the challenges of
test amplification bots. Section 3 explains how we integrate Small-Amp
with GitHub-Actions, and details the sharding, prioritization, and crash
recovery features. Section 4 presents the quantitative results of the
evaluation of five projects. Section 5 enumerates the threats to validity.
Section 6 provides an overview of the related work that inspired
this proof-of-concept. Finally, we summarize the main conclusions
in Section 7.

1 Duplicated mutants refer to identical instances of simulated code errors
ntroduced more than once during the testing process, potentially leading to
edundancy in assessing the effectiveness of a test suite.
2

2. Test amplification

Modern software repositories contain a considerable amount of
tests. These tests are written mostly by developers who have deep
knowledge and understanding of the program. The main idea in test
amplification [16] is exploiting this valuable resource of knowledge to
improve the test suite.

In Small-Amp [12], the state-of-the-art test amplifier in the Pharo
ecosystem, this improvement is achieved by synthesizing new test
methods that permanently increase the mutation coverage when
merged into the codebase. Small-Amp is a replication of DSpot [6] in
he dynamic language of Pharo [17,18].

.1. Amplification algorithm

Small-Amp (as well as DSpot) iterates all test methods in a test class
nd applies the following operations: input amplification, assertion
mplification, and selection by mutation score. To illustrate these
perations, we are going to use a test for a Circular Queue (Listing 1).

CircularQueueTest >> testEnqueueDequeue
| cq |
cq := CircularQueue new.
cq enqueue: 11.
cq enqueue: 22.
cq enqueue: 33.
self assert: (cq size) equals: 3.
self assert: (cq dequeue) equals: 11.
self assert: (cq dequeue) equals: 22.

Listing 1: Circular Queue Test Example

∙ Input amplification transforms the original test method using a set
of input amplifiers to generate new versions of the test method.
Usually, some of these transformed versions of the test method
bring the program under test to an untested state or take a differ-
ent execution path from the original test method. However, the
original test method usually contains some assertion statements
to verify the intended state. Since these assertion statements
are no longer valid in the transformed versions, Small-Amp re-
moves the original statements before the transformation. Listing
2 shows one example after our original test method (Listing
1) goes through input amplification. More specifically, the as-
sertions were removed from the original test, the called meth-
ods and constants changed, and in this case, a new temporary
variable was used.

CircularQueueTest >> testEnqueueDequeue_amp_A1
| cq tmp_Ne5QRJZLBV1 |
cq := CircularQueue new.
cq enqueue: 22.
cq enqueue: 0.
tmp_Ne5QRJZLBV1 := cq dequeue.
cq enqueue: 11.

Listing 2: Circular Queue Test Example

∙ Assertion amplification regenerates appropriate assertions to ver-
ify the actual state of the program by manipulating the generated
test method and inserting observer statements. In this step, the
test method is executed, and Small-Amp extracts the actual state
of the program using object inspection. Small-Amp generates new
assertion statements using these extracted states and adds them

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

a
t

2

a
a
f

3

b
G

in place of observer statements. The new assertions should all
pass for the version of the code they were generated for. Listing
3 shows the previous test method that was input amplified
(Listing 2) after it has new assertions generated by the Assertion
amplification operation. We can see that Small-Amp creates many
new assertions and uses new methods in such assertions (in this
case,class, isEmpty, and isFull).

CircularQueueTest >> testEnqueueDequeue_amp_A1
| cq tmp_Ne5QRJZLBV1 |
cq := CircularQueue new.
self assert: cq class equals: CircularQueue.
self deny: cq isFull.
self assert: cq isEmpty.
self assert: cq size equals: 0.
cq enqueue: 22.
self deny: cq isFull.
self deny: cq isEmpty.
self assert: cq size equals: 1.
cq enqueue: 0.
self deny: cq isFull.
self deny: cq isEmpty.
self assert: cq size equals: 2.
tmp_Ne5QRJZLBV1 := cq dequeue.
self deny: cq isFull.
self deny: cq isEmpty.
self assert: cq size equals: 1.
self assert: tmp_Ne5QRJZLBV1 equals: 22.
cq enqueue: 11.
self deny: cq isFull.
self deny: cq isEmpty.
self assert: cq size equals: 2

Listing 3: Circular Queue Test Example

∙ Selection by mutation score. Up to this step, we have new versions
of the original test method that were transformed by input am-
plifier and equipped with new assertion statements by assertion
amplifier. In this step, mutation testing is run on the program
under test using these generated test methods. Test methods that
increase the mutation coverage by killing new mutants are kept,
and the remaining test methods are discarded. Small-Amp relies
on Mutalk [19], a test amplification platform for Pharo.

More details and examples on the Test Amplification Algorithm
re presented in our previous work [12] and the first author’s Ph.D.
hesis [20].

.2. Challenges for test amplification

The previous section gives the result of a simple example of test
mplification. However, in practice, producing amplified tests is a long
nd laborious activity. In this section, we identify the main challenges
aced by test amplification tools, Small-Amp in particular, to be more

practical and incorporate them into the daily workflow of developers.

∙ Using test amplification tools is cumbersome. In addition to writing
code and tests, developers are usually busy with other activities
like meetings, bug fixing, emails, networking, learning, docu-
mentation, helping others, administration tasks, and others [21–
23]. Test amplification tools are complicated and hard to con-
figure, and using them requires deep knowledge about different
topics like mutation testing [13]. If we expect developers to run
the tool on their workstations, each developer would need to
3

deal with some extra tedious tasks. w
∙ Current test amplification tools do not support time budget manage-
ment. Test amplification execution time varies from test class to
test class, and estimating it in advance is difficult; amplification
tools usually have long execution times and need considerable
processing resources. It is inconvenient for developers to employ
these tools in their workstations, dedicating the entirety of their
resources to test amplification and waiting hours or days for
a test amplification run to completion. Setting a time limit is
necessary for such a long process. On the other hand, the current
test amplification tools lack a mechanism to prioritize their tasks
to gain the maximum benefit when running on a time budget.

∙ Test amplification in live systems is more challenging. Small-Amp am-
plifies programs written in Pharo/Smalltalk which is a so-called
live programming environment [24]. Pharo offers the notion of
liveness which greatly impacts how developers work [25]. The
system always offers an accessible evaluation of a source code
instead of the classical edit-compile-run cycle, and as a conse-
quence, the live programming environment allows for nearly
instantaneous feedback to developers instead of forcing them to
wait for the program to recompile [26].
Ducasse et al. [27] identify the challenges of supporting au-
tomated testing tools in Pharo, and they mention executing
destructive methods in random testing as a challenge and em-
phasize the need for sandboxing. During the amplification pro-
cess, Small-Amp works with two different kinds of mutations:
the mutation on the production code (mutation testing), and
the mutation on test methods (input amplification); and each
mutation applies a random change to the code. Executing such
random code in a live system introduces two major challenges:

– Random code easily leads to infinite loops/recursions and
deadlocks. Worse, it is possible to call critical methods
(terminating the virtual machine and unloading class),
leaving the live system in an unsafe state. Consequently,
an image crash or freeze is more prone to happen dur-
ing amplification [10]. In a live system, a crash means
we no longer have the amplification state in which the
previously amplified results were stored.

– Random code may pollute the internal state of a system,
resulting in flaky tests [28,29]. For example, suppose an
object is cached in a class variable (a static variable in
Java parlance). Developers expect this cached value to
be immutable, but it may be altered unexpectedly dur-
ing mutation testing. As a result, all tests depending on
this cached value would fail after the mutation testing
while passing before. This pollution would remain in the
live system forever and may cause side effects on the
generated tests.

�

�

	

⇒ A Test Amplification Bot may alleviate these challenges.

• Instead of asking developers to run a completely configured
tool on a desktop computer, we can embed the tool in a fully
autonomous process on the continuous integration servers.

• Instead of running the tool until completion, no matter how
long it takes, we can change the base algorithm to run in a
given time budget and optimize accordingly.

• Instead of restarting the process after a crash in a fresh unpol-
luted state, we can run the tool in a sandbox environment to
be able to circumvent (even reproduce) the crash.

. Design of the proof-of-concept

In this paper, we explore the feasibility of a test amplification
ot. We present a proof-of-concept tool that integrates Small-Amp with
itHub-Actions to fully automatically strengthen the existing test suite
ithin a limited time budget.

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.
Fig. 1. Diagram showing the phases and main processes for the GitHub-Actions integration.
3.1. Small-Amp and Pharo

Why small-amp? In principle, we could have chosen any test ampli-
fication tool for our proof-of-concept. We decided to focus on tools
used in dynamic languages given the popularity of such languages
among practitioners. For instance, JavaScript was the most popular
language on StackOverflow.2 At the time of the research, we were
not aware of any test amplification tool for JavaScript. Therefore, we
chose SmallAmp [12] because it was a recent tool for the dynamic
language Pharo Smalltalk. Moreover, Pharo presents more challenges
due to its live programming environment which we deemed interesting
to investigate.

What is interesting about Pharo? Pharo is a Smalltalk-based object-
oriented dynamic-typed language. Pharo also includes a programming
environment, integrated with development tools, a run-time virtual
machine, and live debugging features. Pharo is not ‘‘file-based’’ as
programmers work directly in an Image which is a live environment
that stores the code, the states manipulated by the code, and the current
execution [18].

As a simple analogy, we can think of the Pharo image as an
Operating System and IDE rolled into one container that becomes a
live programming environment. This liveness offers more challenges for
test amplification (as we previously explained in Section 2.2) which we
consider interesting to explore in this research. Moreover, if our proof
of concept works for a more challenging scenario, it will be possible to
adapt it to simpler situations.

3.2. Integration with GitHub-Actions

Why github-actions? We adopted the GitHub-Actions build system as a
suitable platform to build a proof of concept automated test amplifica-
tion tool for several reasons. (1) A build system can be configured once
and used by all contributors in a project or even multiple projects. (2) A
build system can trigger the test amplification based on relevant events
like each pull request, scheduled like running per week, or manually
when needed. (3) A build system executes on the Continuous Integra-
tion Servers, freeing developers’ machines from the computation. (4)
GitHub-Actions defines a language for defining workflows and which
allows for parallelization. (5) Build system has become more popu-
lar in recent years [30–32]. (6) Most well-known open-source Pharo

2 https://survey.stackoverflow.co/2022/#technology-most-popular-
technologies.
4

projects are hosted on GitHub, and GitHub-Actions is freely available
for open-source projects [33].

How does github-actions work? GitHub-Actions is based on workflows,
and each workflow contains one or more jobs that can be run in parallel
or sequential. Each job starts a new operating system instance in a
virtual machine or container and performs some steps. Each step may
run a terminal command or use a private or public custom action [34].
Workflows can be triggered by predefined events like when a new
code is pushed, merged, or based on a schedule. By default, the return
value from a workflow run is only the state of success or failure. How-
ever, GitHub-Actions supports creating artifacts to persist additional
data [35]. GitHub-Actions also allows defining reusable workflows [36],
which facilitate workflow maintenance on the users’ side.

Small-amp integration to github-actions. For integrating Small-Amp, we
define a reusable workflow,3 and also a GitHub-Actions custom action4

to setup a Pharo instance and run Small-Amp in it. Developers in user
projects need to define a workflow that calls the reusable workflow
and pass some main configuration parameters. Some of the essential
parameters required to be configured by the users are the number of
parallel jobs and the project loading parameters. If the workflow is
triggered by a push or pull request, the test amplification tool considers
all changes in the commit; but if triggered manually or by schedule, it
amplifies the entire project or the specified classes.

The workflow contains three sequential phases (Fig. 1). Each phase
is composed of a job or a set of similar jobs that run in parallel. Since
each job starts on a clean operating system, Pharo is installed first, and
then Small-Amp and the project-under-test are loaded in Pharo.

The first phase is prescreening, which consists of a single job with
the following steps:

∙ 1.1 Small-Amp scans all defined test classes in the project and
attempts to detect the class under test by its default heuristic.
(Details are in [12]).

∙ 1.2 If a class contains too many test methods, the test optimiza-
tion will perform poorly. Small-Amp, therefore, shuffles its test
methods and breaks them into smaller temporary test classes.

∙ 1.3 Small-Amp assigns test classes to different job identifiers to
be distributed over jobs in the next phase.

3 http://github.com/mabdi/small-amp/blob/master/.github/workflows/
SmallAmpCI.yml.

4 http://github.com/mabdi/smallamp-action.

https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
http://github.com/mabdi/small-amp/blob/master/.github/workflows/SmallAmpCI.yml
http://github.com/mabdi/small-amp/blob/master/.github/workflows/SmallAmpCI.yml
http://github.com/mabdi/smallamp-action

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

j
f

f
o
b
r
t
s
i
i
e
c

t
e
p
A
S
t
h

3

t
t
i
t
m
w

c
a
h
p
i
f
u
i
s
i

m
W
p
u
m
s

S
r

𝜇

u

m
p
s
k
c
c

w
c
t
c

e

𝑤

The second phase is amplification, which consists of multiple parallel
obs. Each job iterates over its assigned test classes and performs the
ollowing steps:

∙ 2.1 It creates a sandbox for each test class. The amplification
tool is executed within a sandbox to make it crash resilient (see
Section 3.5).

∙ 2.2 It enforces a maximum time budget for each test class
(like 15 min) to ensure that the amplification terminates in a
predictable time (see Section 3.3).

The final phase is merging, in which a single job collects all output
iles from the amplification jobs, merges them, and exports the tool’s
utputs as artifacts. All amplified tests are committed into a new git
ranch, the amplification branch. The new branch is pushed onto the
epository and a pull request is sent from the amplification branch to
he main branch. In order to facilitate code reviewing and individual
election from the pull request (cherry-picking), each commit only
ncludes a single test method. Developers can load the code submitted
n the amplification branch into their IDE and use debuggers and
ditors to polish the tests. GitHub’s web interface can be used for quick
orrections.

In that sense, the proof-of-concept decides for itself which tests
o amplify, incorporates the synthesized tests in a separate branch,
xecutes the strengthened test suite and —if all steps pass— opens a
ull request with the strengthened test suite onto the main branch.
ll this happens without any intervention of a software engineer.
ubsequent code reviewing then needs to handle the pull request with
he strengthened test suite just like it would handle a pull request by a
uman team member.

.3. Test-method prioritization

Since the execution time of the test amplification tool varies from
est class to test class, we set a time limit on each amplification process
o make it more practical. The test amplification algorithm introduced
n DSpot and Small-Amp does not provide time budget management. In
his section, we extend the Small-Amp algorithm by proposing a test-
ethod prioritization heuristic to increase the algorithm’s efficiency
hen executed within a limited time budget.

This heuristic is based on the two intuitions (i) a test method
overing more live mutants has a better chance of killing them; (ii)
test method killing mutants in the immediate method under test

as a better focus. The first intuition is inspired by the reach–infect–
ropagate–reveal principle: a good test must reach the mutant before
t can kill it [37]. The second intuition is based on the idea of a
ocal method under test, the fine-grained primary target exercised by a
nit test [38]. Therefore, we first count the number of live mutants
n all covered methods by a test and compute a mutant coverage
core for each test method. Next, we filter out the immediate mutants,
.e. mutants injected in methods one step away in the call graph.

Finally, based on these scores, we calculate a weight for each test
ethod and select one of them using the roulette wheel method [39].
e select an individual randomly in a roulette wheel selection, but the

robability of this selection corresponds to its weight. The benefit of
sing this selection mechanism is to increase diversity in the selected
ethods by giving a chance to less-favored test methods of being

elected.

etting scores and weights. We suppose that we have a function 𝜇 that
eturns the number of live mutants (𝑎𝑘) in each method under test (𝑚𝑘):

= {𝑚1 ↦ 𝑎1, 𝑚2 ↦ 𝑎2,… , 𝑚𝑛 ↦ 𝑎𝑛}

In addition, we have a directed graph 𝐺 = (𝑉 ,𝐸) for the method in-
5

vocations. The vertices correspond to all test methods (𝑇) and methods
nder test (𝑀). There is also a directed edge from node 𝑣 to node 𝑣′ if
𝑣 invokes 𝑣′.

𝑉 = 𝑇 ∪𝑀

𝐸 = {𝑣 → 𝑣′|𝑣, 𝑣′ ∈ 𝑉 ∧ 𝑣′ is invoked from 𝑣}

We define the coverage set of the test method 𝑡 as the set of all
methods under test covered by 𝑡:

𝐶𝑡 = {𝑚|𝑚 ∈ 𝑀 ∧ ∃ 𝑝 = (𝑡 → ⋯ → 𝑚) ∈ (𝐺)}

In this relation, (𝐺) is the set of all paths in the graph 𝐺, and 𝑝 is a
path starting from 𝑡 and ending in 𝑚. Similarly, we define the immediate
coverage set (path length is 1) as:

𝐼𝑡 = {𝑚|𝑚 ∈ 𝑀 ∧ ∃ 𝑝 = (𝑡 → 𝑚) ∈ (𝐺)}

Now, the scoring function 𝑠 is:

𝑠(𝑡) = 𝛼 + 𝛽
∑

𝑚∈𝐼𝑡

𝜇(𝑚) + 𝛾
∑

𝑚∈𝐶𝑡−𝐼𝑡

𝜇(𝑚)

The first part of this equation is the scoring offset. If 𝛼 = 0, all test
ethods not covering any mutant are excluded from the amplification
rocess. The second part of the equation is the immediate coverage
core. As a result, we expect the mutants in these methods to be
illed faster than deeper mutants. The third part of the equation is the
overage score. In this part, we consider all remaining mutants in other
overed methods.

The variables 𝛼, 𝛽 and 𝛾 are tuning parameters: For a default value,
e choose 𝛼 = 1 to prevent excluding the test methods with no mutant

overage because these tests may be able to kill new mutants after some
ransformations. Since we prefer to prioritize the mutants in instantly
overed methods, so we choose 𝛽 = 3, 𝛾 = 1.

After calculating the score for each test method, we set a weight for
ach test method as:

(𝑡) =
𝑠(𝑡)
𝑆

; where 𝑆 =
∑

𝑡∈𝑇
𝑠(𝑡)

These weights drive the roulette wheel selection of the test method
to be amplified. The scores and weights need to be updated in each
cycle because the number of live mutants in the methods changes
after each test amplification loop. Recalculating the weights does not
have much overhead because the coverage graph does not need to be
regenerated each time. We only need to update the 𝜇 function and
recalculate 𝑠(𝑡) and 𝑤(𝑡) for all remaining tests.

To summarize, our prioritization assigns weights to test methods.
The methods scoring higher weights will be favored when the test
amplification selects a test method to amplify.

Changes in the algorithm. First of all, we update the input amplifica-
tion and assertion amplification steps in Small-Amp to make them time
budget aware: If the time limit is attained, new test inputs are not
input/assertion amplified, and all the currently amplified instances are
returned. We also added a test method selection based on the weight
assignment heuristic, and the roulette wheel method described earlier
in this section. We present the updated time budget aware algorithm
in Algorithm 1 (main changes highlighted in blue).

In the new algorithm, initially, we run mutation testing to calculate
the live mutants (𝐴𝐿𝑉). Then, we execute assertion amplification on
all test methods to kill those mutants that can be killed only by ex-
panding the assertion statements. Since a single assertion amplification
is faster than the combination of input amplification and assertion
amplification, this step does not need any selection based on the scores.
We remove the newly killed mutants from 𝐴𝐿𝑉 and select a random
test to be amplified using the roulette wheel method (line 5). The
main amplification loop runs on the selected test method 𝑡 (lines 8
to 13). Then, the method is removed from the list of all test methods
to be amplified 𝑇 (line 14), and the weights are recalculated based
on the current live mutants. Then, a random test from the remaining

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.
Fig. 2. Activity diagram for a self-aware test amplification in a live system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
input : class-under-test CUT
input : set of test methods T
input : hyperparameters {Niteration}
output: set of amplified test methods ATM

1 𝐴𝐿𝑉 ← mutationTesting(𝐶𝑈𝑇 , 𝑇);
2 𝑈 ← amplifyAssertions(T);
3 𝐴𝑇𝑀 ← {𝑥 ∈ 𝑈 | x improves mutation score};
4 𝐴𝐿𝑉 ← 𝐴𝐿𝑉 − {𝑥 ∈ 𝐴𝐿𝑉 | x is killed in ATM};
5 𝑡 ← rouletteWheel(𝐶𝑈𝑇 , 𝑇 , 𝐴𝐿𝑉);
6 while 𝑡 ≠ null do
7 𝑉 = {𝑡};
8 for 𝑖 ← 0 to 𝑁 iteration do
9 𝑉 ← amplifyInputs(𝑉);

10 𝑈 ← amplifyAssertions(V);
11 𝐴𝑇𝑀 ← 𝐴𝑇𝑀 ∪ {𝑥 ∈ 𝑈 | x improves mutation score};
12 𝐴𝐿𝑉 ← 𝐴𝐿𝑉 − {𝑥 ∈ 𝐴𝐿𝑉 | x is killed in ATM};
13 end
14 𝑇 ← 𝑇 − {𝑡};
15 𝑡 ← rouletteWheel(𝐶𝑈𝑇 , 𝑇 , 𝐴𝐿𝑉);
16 end
17 return ATM
Algorithm 1: Updates in amplification algorithm to support time
budget management

unamplified tests is selected considering their weight (line 15). If all
test methods are visited or the time budget is due, the roulette wheel
returns a null value, and then the final amplified test methods (𝐴𝑇𝑀)
are returned.

For identifying pollution (Section 2.2), we run the test class after
the early mutation testing (Algorithm 1 line 1). If the test is green, we
assume the state is not polluted and continue the algorithm.

3.4. Sharding

While experimenting on real projects with the time budgets, we
witnessed that the number of test methods skipped in some classes was
unacceptable because they include tens (sometimes hundreds) of test
methods. Methods were skipped due to a consequence of our roulette
wheel selection, which favors methods with higher priority. Using a
variable time budget based on the test method numbers does not solve
the problem entirely because amplifying some of these large classes
may need more time than the jobs’ allowed time (6 h in GitHub-Actions).
Therefore, as a solution to decrease the number of skipped methods, we
6

split long test classes into smaller temporary test classes. We call this
action Sharding.

We use a threshold (default 15 test methods) as a sharding factor.
We chose 15 based on our experience, considering it a suitable thresh-
old for the analyzed projects. If a class contains more test methods
than the defined threshold, Small-Amp shuffles its test methods and
distributes them into smaller temporary test classes. In parallel jobs,
all jobs must produce the same shards, so a shared randomization
seed is required. We derive this seed from the workflow run id in our
proof-of-concept.

Predicting the number of jobs. The following formula estimates the
minimum number of parallel jobs required for a successful test ampli-
fication:

𝐽𝑚𝑖𝑛 = ⌈

𝑏 ×
∑

𝑐∈𝑇𝐶⌈
𝑡𝑐
𝑆 ⌉

𝑀
⌉

where 𝐽𝑚𝑖𝑛 is the minimum number of jobs required, 𝑏 is the time
budget per class, 𝑀 is the maximum allowed execution time for each
job by platform, 𝑡𝑐 is the number of tests in the class 𝑐, 𝑆 is the sharding
factor, and finally, 𝑇𝐶 is the set of test classes to be amplified.

Therefore, the expression ∑

𝑐∈𝑇𝐶⌈
𝑡𝑐
𝑆 ⌉ shows the number of classes

after sharding. We expect that all shards finish in the defined budget
(𝑏), so the fraction’s numerator calculates the minimum time needed
to amplify all tests in a single job. However, we suppose that the build
system defines an execution limit on each job (𝑀). Dividing the time
needed to amplify all classes by the maximum job execution achieves
the minimum number of required jobs.

3.5. Crash resilience

Small-Amp is designed to run within a Pharo image, representing the
complete state of the live system. Besides the system under test, the
tool and its necessary components (the compiler, test runner, mutation
testing framework, . . .) run in the same Pharo image and therefore the
same memory space. This architecture introduces a serious risk: if a
crash happens, the whole Pharo process is lost, including the crashed
component as well as the Small-Amp core.

A reliable test amplification tool running in a live environment, like
Pharo, should be able to recover from these crashes without losing
the entire state of the amplification process. Without a crash recovery
mechanism, integration into build systems is impossible because any
crash in Small-Amp will fail the entire workflow.

We enumerate some common reasons for an unexpected termina-
tion:

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

f
h
s

i

∙ Killed by the operating system. The Operating System may kill the
Pharo process with an Out of memory error. This issue commonly
happens in the mutation testing step when the process creates
infinite recursion because of the injected fault.

∙ Pharo process crashes. The Pharo process is terminated unex-
pectedly with errors like Segmentation fault or Assertion failed.
For example, in one case (github.com/ObjectProfile/Roassal3/
issues/142) the Pharo process crashes because one of its native
libraries aborted.

∙ Pharo process freezes or waits forever. Pharo freezes because it exe-
cutes a mutated test method that enters a deadlock and waits for-
ever (github.com/pharo-project/pharo/issues/6754),
(github.com/feenkcom/gtoolkit/issues/1454). Note that similar
problems also happen in other tools such as DSpot (github.com/
STAMP-project/dspot/issues/994).

∙ Unwanted process termination. A mutated test calls a critical
method in the system API. For example in one case (github.com/
pharo-project/pharo-launcher/issues/454), during input ampli-
fication, a method call is added that snapshots the image and
exits with return code 0.

Consistent with previous studies [10,40,41], these crashes are inter-
esting from a reliability perspective, and the pieces of code that broke
Pharo can be used to reproduce the crash. So, besides recovering from
the crashes, we collect sufficient information to allow developers to
reproduce them.

How to recover from crashes? We use the application heartbeats [42]
to make test amplification self-aware [43] by detecting crashes and
recovering from them. To this aim, we use a separate process (called
the runner script) that initiates the amplification process in Pharo and
watches its status. Fig. 2 shows the activity diagram for describing how
these two processes interact to detect the crashes and recover from
them. The components on top, which are colored yellow and have a
light border, are steps executed in the Pharo image by Small-Amp. The
components on the bottom, which are colored green and have a bold
border, are steps executed in the runner script.

The runner script runs a Pharo process (child process) and initiates
Small-Amp. Small-Amp regularly creates heartbeat signals by updating
the content of a heartbeat file to notify that it is still functioning. The
runner script also periodically watches the update time of the heartbeat
file to make sure that the child is alive and works as expected.

Before starting to amplify a test method, Small-Amp sets a flag crash
to False in a shared file (state file) and snapshots the current state of
the Pharo image. Then, it loads the state file and checks the value of
the crash flag. If it is the same stored value (False), it starts to amplify
the test method.

If a crash happens while amplifying a test method, the Pharo image
terminates unexpectedly or ceases to produce heartbeat signals. In this
case, the runner notifies that there is a problem in the child process. It
kills the child process if it is still running, then updates the state file by
setting the crash flag value to True. Then it collects the available logs,
including the last generated test method causing the crash. Finally, it
resumes the Pharo image and watches its status again.

Pharo is a live system; when we snapshot its state, the next time we
start the image, it will continue from the snapshot point. In our case,
it resumes from the decision activity labeled Check crash (Fig. 2), not
from the beginning of the Small-Amp algorithm. After recovering from a
crash, Small-Amp loads the state file and checks the value of the crash
lag. Since the runner has flipped its value, it concludes that a crash may
appen if it continues to amplify the current test method. Therefore, it
kips this test method and continues to amplify other methods.

The runner also keeps track of the number of recovered crashes. If it
s more than a fair number MAX_CRASH (default is 10), it understands

that there is a severe problem in amplifying this class, so it stops trying.
If all test methods are amplified in the Pharo process, it finalizes
7

and exports the results. Then it updates a flag finish in the state file
and exits the process. The runner realizes that the child process has
exited with a SUCCESS return code. It checks the finish flag; if it
is set correctly, it stops watching and finishes the process; otherwise,
it considers this termination as a crash. As explained earlier, we do
not trust the return value because the exit API can be called indirectly
during test amplification.

4. Evaluation

To evaluate whether a test amplification bot is indeed feasible and
to quantify the impact of prioritization, sharding, and sandboxing, we
formulate the following research questions.

RQ1 – Is it possible to fully automatically amplify a test
suite using GitHub-Actions? This is the primary research question
for this feasibility study. To evaluate whether a test amplification
bot is feasible, we install the proof-of-concept extension of Small-Amp
on five open-source Pharo projects deployed on GitHub. We collect
quantitative evidence on the execution times when run on the GitHub
platform.

RQ2 – How does the prioritization heuristic affect the test
amplification performance? To quantify the impact of the test pri-
oritization, we compare the number of killed mutants with or without
test prioritization and the execution time with and without the time
budget.

RQ3 – How many duplicated mutants are created after shard-
ing? The sharding step splits large test classes (more than 15 test
methods) to avoid that the optimization step is forced to ignore relevant
test methods. However, the same mutant may then be killed by more
than one of the shards, thus resulting in duplicated mutants. Dupli-
cated mutants designate wasted computations in the test amplification
algorithm and, hence should be minimized.

RQ4 – Does sandboxing circumvent crashes? To illustrate the
necessity of sandboxing, we count how often the sandbox recovered
from (a) a system freeze, (b) a system crash, and (c) a polluted image.

4.1. Dataset

We used the GitHub search API to sort the Pharo projects based on
the number of stars. Then we discarded the system projects and projects
without a smalltalkCI configuration file (.smalltalk.ston).
smalltalkCI is a framework to integrate the Pharo projects with continu-
ous integration platforms. We prefer the projects to include
.smalltalk.ston file because it contains all project-wise config-
urations, as well as shows that the project is CI-friendly. After filtering,
we selected the five projects with the most stars. We had to limit the
evaluation to five projects because running Small-Amp at the project
level takes considerable time, and we had to repeat the evaluation
multiple times. The final selected projects (with links to the project
original repository and our fork used in this evaluation), their number
of stars, and a short description are shown in Table 1.

Table 2 shows the descriptive statistics for the test classes in these
projects. In this evaluation, we exclude the test classes without any
passing (green) test method or test classes with 100% mutation cov-
erage. We also consider test classes with more than 15 test classes as
large test classes and break them down into shards.

4.2. Experimental design and results

We forked all projects in our dataset in GitHub and set up the test
amplification GitHub-Actions workflow. In setting the default values
for the workflow we exploited the content of .smalltalk.ston for
loading the project, and the default values defined by Abdi et al. [12]
for running Small-Amp (𝑁𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 = 10, 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 3). Since they report
that the majority of executions are finished in less than 6 min, we set
the time budget to 12 min to have some leeway. We consider a crash if

the heartbeat file is not updated for 4 min. We used eight parallel jobs

http://www.github.com/ObjectProfile/Roassal3/issues/142
http://www.github.com/ObjectProfile/Roassal3/issues/142
http://www.github.com/ObjectProfile/Roassal3/issues/142
http://www.github.com/pharo-project/pharo/issues/6754
http://www.github.com/feenkcom/gtoolkit/issues/1454
http://www.github.com/STAMP-project/dspot/issues/994
http://www.github.com/STAMP-project/dspot/issues/994
http://www.github.com/STAMP-project/dspot/issues/994
http://www.github.com/pharo-project/pharo-launcher/issues/454
http://www.github.com/pharo-project/pharo-launcher/issues/454
http://www.github.com/pharo-project/pharo-launcher/issues/454

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.
Fig. 3. Diagram showing the evaluation process to collect the test artifacts for each workflow.
Table 1
Dataset composed of 5 Pharo projects from GitHub.

Project Stars Description

Seaside 389 Web-application Framework
PolyMath 148 Scientific Computing for Pharo
NovaStelo 113 Block-style programming environment
Moose 103 Platform for software and data analysis
Zinc 69 HTTP networking protocol framework

Table 2
Descriptive statistics for the test classes.

Seaside PolyMath NovaStelo Moose Zinc

before sharding 82 68 50 8 35
large test classes 10 3 7 0 2
after sharding 99 87 82 8 40
with 100% coverage 29 3 16 0 2
without any green test 0 0 3 0 0

Classes to be amplified 70 84 63 8 38

for each workflow, plus one initial and one finalizing job, totaling ten
jobs for each workflow run. Since GitHub-Actions offers up to 20 jobs
to run simultaneously for free accounts and open source projects at the
time of writing this paper, this number of jobs is acceptable for open
source projects. GitHub also allows each job to run for a maximum of 6
hours [33]. Fig. 3 shows a simplified diagram of the described process.

Then we manually ran the workflow six times. We enabled the test
method prioritization mechanism in the first three runs and disabled
it in the subsequent three runs. We opted for three repetitions for
each experiment to account for the non-deterministic nature of the
test-amplification algorithm, aiming to evaluate the potential impact of
multiple executions on the results. We collected the generated artifacts
and analyzed them to answer our research questions. To conclude, we
manually ran 30 workflows in total (6 for each of the five projects),
resulting in 300 jobs on GitHub servers.

Table 3 shows the results from this analysis. In each run, 263 test
classes are executed (row 1) in which between 209 to 221 cases are
finished (row 2), and 28 to 34 cases are unfinished (row 4). In 92 to
105 cases, Small-Amp is able to successfully amplify the test class (row 6)
and generate 165 to 223 new test methods (row 9). In 17 to 21 cases,
the time budget was in effect (row 10), so 116 to 148 test methods
were skipped during amplification (row 11). The execution for each
8

run, the sum of all projects, takes between 4:19 to 5 h (row 12). We
have included the artifacts and workflow run logs in the reproduction
package.5

4.3. RQ1: Is it possible to fully automatically amplify a test suite using
github-actions?

Table 3 shows that for the 263 test classes, the test amplification
finished successfully in 209–221 cases. The maximum execution time
for an entire project was about 90 min for Seaside, while the minimum
time was around 27 min for Moose. Since each workflow can run
up to 6 h in GitHub-Actions, these values show that there is room
for optimizing the configurations. This may be done by reducing the
number of parallel jobs from 8 to a lower value; by increasing the
Small-Amp parameters (𝑁𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡, 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛); and by increasing the time
budget. This illustrates that fine-tuning the configuration is needed
when a test amplification bot is adopted for a given project but there
is sufficient room to do so.

In addition, if we consider the execution time per project in all 6
runs, we see that the results are similar and do not vary a lot. This
similarity confirms that setting a time budget makes the execution time
of test amplification indeed more predictable.▷

⊴

�

◁
Answer to RQ1: Our proof-of-concept demonstrates that integrat-
ing a test amplification tool within a continuous integration server
allows for a fully autonomous process. Moreover, the time budget
allows for doing so in an acceptable period of 30 to 90 min in our
analysis.

4.4. RQ2: How does the prioritization heuristic affect the test amplification
performance?

By design, if the test amplification hits the time limit, it kills fewer
mutants. However, the test prioritization should dampen this effect.
We expect more killed mutants with test prioritization than without.
On the other hand, when the time limit is not reached, the impact
of test prioritization should be negligible. We, therefore, compare the
value of the increased kill count based on their timeout status in
two configurations (prioritization enabled in the first three runs and
disabled in the next three). The value of increased kills is calculated as
follows:

100 ×
#𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛

#𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛

5 http://github.com/mabdi/SmallAmp-evaluations.

http://github.com/mabdi/SmallAmp-evaluations

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

c

m
w

Table 3
The result of the quantitative analysis.

Prioritization Enabled No Prioritization

#1 #2 #3 #1 #2 #3

1 # All test classes executions 263 263 263 263 263 263
2 # Finished executions 221 216 217 213 209 216
3 # Image pollution 14 18 17 16 23 18
4 # Unfinished 28 29 29 34 31 29
5 # Recovered freezing/crashes 37 (16.7%) 37 (17.2%) 37 (17%) 43 (20.1%) 44 (21%) 37 (17.1%)

6 # Executions having improvement 105 98 97 92 96 102
7 % Executions having improvement 47.51% 45.37% 44.70% 43.19% 45.93% 47.22%
8 # Test methods 1805 1766 1757 1703 1677 1762
9 # Generated tests 223 213 194 165 166 199

10 # All mutants in finished cases 9758 9670 9713 9094 9029 8761
11 # Mutants live original 3984 3957 3972 3814 3315 3292
12 # Mutants killed original 5774 5713 5741 5280 5779 5469
13 # Newly killed mutants 561 561 533 483 499 538
14 % Increased kills 9.71% 9.81% 9.28% 9.14% 8.63% 9.83%

15 # Mutants killed in Large test classes 198 176 167 115 144 157
16 # Duplicated killed mutants in Large classes 56 56 48 34 51 58
17 % Duplicated killed in Large classes 28.28% 31.82% 28.74% 29.57% 35.42% 36.94%

18 # Time budget finished 18 18 18 17 19 21
19 # Test methods skipped 148 133 123 118 116 119

20 Workflow duration: All 4:33:41 4:42:09 4:35:45 5:00:54 4:19:13 4:37:20
21 Seaside 1:28:14 1:32:34 1:24:47 1:31:14 1:28:06 1:25:23
22 PolyMath 1:04:57 1:07:08 1:06:43 1:12:21 1:10:11 1:07:19
23 NovaStelo 1:00:58 1:01:08 1:04:21 1:12:24 0:41:16 1:03:53
24 Moose 0:26:45 0:27:37 0:27:52 0:27:18 0:27:59 0:26:29
25 Zinc 0:32:47 0:33:42 0:32:02 0:37:37 0:31:41 0:34:16
Table 4
Comparison of the number of newly killed mutants when prioritization is enabled and
disabled.

Timeout In time

Number of classes 7 156

Disabled (killed mutants) 44 1267
Enabled (killed mutants) 59 1276

Increase 34.09% 0.70%

Table 4 compares the number of newly killed mutants for these test
lasses and their increase.

As expected, we see the cases with prioritization have better perfor-
ance (34.09%) when they run out of time. For the classes that finished
ithin time, the increase in the killed mutants is negligible (0.70%).▷

⊴

�

◁
Answer to RQ2: Test prioritization is an effective way to impose
a predictable time budget on the test amplification. In those cases
where the time limit is reached, test prioritization kills more mu-
tants. When the time limit is not reached, test prioritization has
negligible impact.

4.5. RQ3: How many duplicated mutants are created after sharding?

Sharding involves splitting classes into smaller units to run in
parallel. Therefore, this process may lead to more duplicate mutants
since parallel jobs working independently can result in multiple jobs
addressing the same mutants, as each job lacks knowledge or access to
others.

To quantify how much waste is induced by the sharding step, we
calculate the number of duplicated mutants killed due to splitting
overly large (more than 15 test methods) classes.

First of all, Table 2 illustrates that such large test classes actually
9

exist, although it depends a lot on the project. The Seaside project has
10 large classes; hence the sharding increased the number of test classes
from 82 to 99. The Moose project, on the other hand, had no large test
classes.

For those cases with large test classes, we found 198, 176, 167, 115,
144, and 157 killed mutants (3, row 15). Consequently, the number
of duplicated mutants in the shards is 56, 56, 48, 34, 51, and 58
(3, row 16). Therefore, about 28% to 37% of the killed mutants are
duplicated when we employ sharding, which is considerable. Further
research is warranted to see whether we can decrease these duplicates,
for instance, by clustering the shards based on their coverage. Finding
a balance between the sharding factor and the time budget (in our
analysis, we used 15 and 12 min) may also decrease the number of
duplications.▷

⊴

�

◁
Answer to RQ3: Sharding allows running the test amplification in
a given time budget, even with overly long test classes. However,
it comes at a cost: in our analysis, we see around 30% duplications
in the killed mutants when large test classes get split into distinct
shards.

4.6. RQ4: Does sandboxing circumvent crashes?

To assess the effectiveness of sandboxing mechanism, we process
the job logs in all six runs to collect quantitative evidence of crashes,
freezes, and polluted images. In the finished execution, we see 37 to
44 classes recovered from a crash (Table 3, row 5). Overall, the crash-
recovery mechanism recovered the amplification process 235 times in
all six runs. After investigating the reasons for these crashes, we found
that most cases (about 95%) are recovering from a system freeze. In
one case, the crash is because of a Segmentation fault error.

Table 3 row 3 shows in 14 to 23 cases of classes, image-state
pollution occurs; note that the numbers vary because of sharding.
However, this only occurred in one of the projects (NovaStelo), where
test classes are green before mutation testing and become red after.
The NovaStelo project had 58 test classes at the time of our analysis,
therefore, between 24.1% (14/58) and 39.6% (23/58) suffered from
image-state pollution.

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

c
w
t

A

We conclude that image crashes, freezing, and state pollution is
a phenomenon that occurs regularly during test amplification. When
these are not appropriately handled, test amplification integration
in continuous integration will fail. Nevertheless, the proposed crash-
recovery mechanism allows Small-Amp to overcome the problems and
skip the failing cases.▷
⊴

�
◁

Answer to RQ4: Image crashes, freezing, and state pollution
frequently happen when running the test amplification in Pharo.
The results of the evaluation show that the proposed sandboxing
mechanism is effective in overcoming these problems.

5. Threats to validity

Did we measure what was intended? (construct validity). We use quan-
titative metrics (the number of newly killed mutants, the number of
recovered crashes, and execution time) to quantify the impact of a test
amplification bot and the effect of prioritization, sharding, and sand-
boxing. These metrics are the right metrics to address the four research
questions. However, the larger question is whether a test amplification
bot would be adopted by a team of practicing developers. A qualitative
study would be needed to evaluate whether the recommended tests add
value, which is beyond the scope of this paper.

Are there unknown factors that might affect the outcome of the analyses?
(internal validity). The test amplification tool, the prioritization mecha-
nism, and the GitHub-Actions workflow include various parameters. For
onfiguring Small-Amp, we used the parameters from Abdi et al. [12], in
hich the authors have not claimed that values are optimal. Similarly,

he prioritization mechanism parameters (𝛼, 𝛽, and 𝛾 in Section 3.3) are
also configured by preliminary values based on authors’ insights. We
see this risk as a minimum because optimizing the parameters should
lead to a better result, not invalidating the findings.

Moreover, the choice of 15 as a threshold for the methods in
Sharding lacks a deeper evaluation. Although based on our experience,
it was not entirely arbitrary, but we recognize the need for a more
thorough study to validate the optimal threshold value. This aspect is
left for future work.

For identifying pollution (Section 2.2), we run the test class after
the early mutation testing (Algorithm 1 line 1). If the test is green, we
assume the state is not polluted and continue the algorithm, otherwise,
pollution has occurred. We reduce the impact of image pollution by
using a fresh Pharo image for amplifying each test class, which stops
propagating the possible pollution to the following process. However,
there might be some pollution undetected by the tests. Further research
is needed for more effective methods to detect image pollution, as there
may be additional pollution scenarios than those reported in our results.

To what extent is it possible to generalize the findings? (external validity).
The proof-of-concept test-amplification bot has been validated against
5 Pharo projects available on GitHub. These were active projects receiv-
ing a high number of stars and coming with a good amount of unit tests
covering a lot of the code (cfr. 1 and 2). As such these were projects
with a good maturity, hence the selected projects imply a positive bias.
It is unclear at this stage whether test amplification bots would also
work in the context of less mature projects with heavily fluctuating
tests.

Concerning the test amplification bots, we expect the overall find-
ings like the applicability of project-level test amplification (RQ1), the
impact of test method prioritization (RQ2) and sharding (RQ3), and
the relevance of the sandbox mechanism (RQ4) to be valid in other
tools. However, we cannot make any claim about the numbers and
10

other details to be valid for other ecosystems.
Is the result dependent on the tools? (conclusion validity). Our work de-
pends on Small-Amp as the test amplification tool. In RQ2, we compare
the results from Small-Amp in two different configurations to assess the
impact of prioritization. So, we expect the differences in the results
to be mainly because of the configuration, not the tool itself. Another
critical factor is randomness, which we tried to diminish by repeating
the experiment three times for each configuration on five different
mature projects with a high number of test classes.

6. Related work

This work extends Small-Amp [12], test amplification in Pharo by
integrating it into GitHub-Actions, providing a prioritization heuristic,
sharding, and sandboxing. Test amplification for crash reproduction
has also been reported in other papers [10,40,41]. To the best of our
knowledge, sharding (i.e. splitting test cases to fit in a time budget) is
a novel concept in test amplification. However, some works in parallel
test case prioritization also split a test suite to fit a time budget (running
different portions of the test suite in different machines) [44].

There are several works in the Pharo community related to our
sandboxing solution: Polito et al. study the bootstrapping problem in
Smalltalk and provide the Hazelnut model for bootstrapping reflective
systems [45]. The work by Béra et al. introduces Sista, a fast snap-
shotting and restoring solution to increase the warmup time of Pharo
images [46]. Epicea [47] records the changes in the code and some IDE
events in logs, which can be used to recover the lost state.

We consider our extension of Small-Amp as a proof of concept
for a test amplification bot. Relevant related work for test amplifica-
tion bots is techniques for increasing the readability of the generated
tests, i.e. intention revealing names [48] and removing the redundant
statements [49].

Repairnator [50] on the other hand is a complementary attempt at
a test automation bot, this time for automated program repair. Other
complementary work on test automation bots is the work by Campos
et al. [15]. They introduce Continuous Test Generation (CTG) by incor-
porating EvoSuite in a continuous integration setting. In a similar vein,
Danglot et al. [7] investigated ways to exploit test amplification in a
continuous integration setting.

7. Conclusion

In this paper, we argued that a test amplification bot may alleviate
the challenges that prevent widespread adoption of test amplification
tools. In this vision, a test amplifier decides for itself which tests to
amplify, incorporate the synthesized tests in a separate branch, execute
the strengthened test suite, and —if all steps pass— push the strength-
ened test suite onto the main branch. All without any intervention of
a software engineer. To demonstrate the feasibility of this vision, we
present a proof-of-concept tool that integrates Small-Amp with GitHub-
ctions to automatically strengthen the existing test suite within a

limited time budget.
We validated the proof-of-concept tool on five popular open-source

Pharo projects. The results show that integrating a test amplification
tool within a continuous integration server indeed allows for a fully
autonomous process. Moreover, the time budget allows us to do so in an
acceptable time span; of 30 to 90 min in our analysis. Test prioritization
was able to improve the performance of the tool when the time budget
was exceeded by up to 34%. Test sharding was needed to run the
test amplification in a given time budget, even with overly long test
classes. However, it comes at a cost, in our analysis, we see around 30%
duplication in the killed mutants when large test classes get split into
distinct shards. Last but not least, we demonstrated that sandboxing is
an effective way to make the test amplification crash-resilient.

Even though a bot would facilitate the adoption of test amplifica-
tion, more qualitative research is needed to make the results acceptable.
This ranges from improving the readability of the generated test cases
(intention revealing names, meaningful comments, . . .) to usability

studies assessing the added value of the amplified tests.

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.

C

d
I
–
p
i
g
W

D

c
i

D

a

A

S
d
M

R

Reproduction package

Supplementary resources are available in our reproduction package
available at our GitHub Repository.6

RediT authorship contribution statement

Mehrdad Abdi: Data curation, Investigation, Methodology, Vali-
ation, Writing – original draft, Conceptualization. Henrique Rocha:
nvestigation, Resources, Supervision, Writing – original draft, Writing
review & editing. Alexandre Bergel: Investigation, Methodology, Su-
ervision, Validation, Writing – original draft, Writing – review & edit-
ng. Serge Demeyer: Conceptualization, Funding acquisition, Investi-
ation, Methodology, Project administration, Supervision, Validation,
riting – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Supplementary resources are available in our reproduction package
vailable at our GitHub Repository.7.

cknowledgments

This work is supported by (a) the Fonds de la Recherche
cientifique-FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaan-
eren (FWO) under EOS Project 30446992 SECO-ASSIST (b) Flanders
ake vzw, the strategic research centre for the manufacturing industry.

eferences

[1] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, Mark
Harman, Mutation testing advances: An analysis and survey, in: Advances in
Computers, Adv. Comput. 112 (2019) 275–378.

[2] Gordon Fraser, Andrea Arcuri, Evosuite: automatic test suite generation for
object-oriented software, in: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,
2011, pp. 416–419.

[3] C. Pacheco, S. K. Lahiri, M. D. Ernst, T. Ball, Feedback-directed random test
generation, in: 29th International Conference on Software Engineering (ICSE’07),
2007, pp. 75–84.

[4] Nikolai Tillmann, Jonathan de Halleux, Pex–white box test generation for. net,
in: International Conference on Tests and Proofs, Springer, 2008, pp. 134–153.

[5] Benoit Baudry, Simon Allier, Marcelino Rodriguez-Cancio, Martin Monperrus,
Dspot: Test amplification for automatic assessment of computational diversity,
2015, arXiv preprint arXiv:1503.05807.

[6] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, Martin Monperrus,
Automatic test improvement with dspot: a study with ten mature open-source
projects, Empir. Softw. Eng. 24 (4) (2019) 2603–2635.

[7] Benjamin Danglot, Martin Monperrus, Walter Rudametkin, Benoit Baudry, An
approach and benchmark to detect behavioral changes of commits in continuous
integration, Empir. Softw. Eng. 25 (4) (2020) 2379–2415.

[8] Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, Benoit Baudry,
Suggestions on test suite improvements with automatic infection and propagation
analysis, 2019, arXiv preprint arXiv:1909.04770.

[9] Mehrdad Abdi, Henrique Rocha, Serge Demeyer, Test amplification in the pharo
smalltalk ecosystem, in: Proceedings IWST 2019 International Workshop on
Smalltalk Technologies, ESUG, 2019.

[10] Mehrdad Abdi, Henrique Rocha, Serge Demeyer, Reproducible crashes: fuzzing
pharo by mutating the test methods, in: International Workshop on Smalltalk
Technologies, IWST, 2020.

[11] Ebert Schoofs, Mehrdad Abdi, Serge Demeyer, Ampyfier: Test amplification in
python, J. Softw.: Evol. Process n/a (n/a) (2022) e2490.

6 https://github.com/hscrocha/TestAmplificationBotReproductionPackage.
7 https://github.com/hscrocha/TestAmplificationBotReproductionPackage
11
[12] Mehrdad Abdi, Henrique Rocha, Serge Demeyer, Alexandre Bergel, Small-amp:
Test amplification in a dynamically typed language, Empir. Softw. Eng. 27 (2022)
128.

[13] STAMPproject, Use cases validation report v3, 2019, [on line] https://github.
com/STAMP-project/docs-forum/blob/master/docs/d57_uc_validation_report-
final.pdf — last accessed on August 2023.

[14] Carolin Brandt, Andy Zaidman, Developer-centric test amplification the interplay
between automatic generation and human exploration, 2021.

[15] José Campos, Andrea Arcuri, Gordon Fraser, Rui Abreu, Continuous test gen-
eration: Enhancing continuous integration with automated test generation, in:
Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, Association for Computing Machinery, New York,
NY, USA, 2014, pp. 55–66.

[16] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin
Monperrus, Benoit Baudry, A snowballing literature study on test amplification,
J. Syst. Softw. 157 (2019) 110398.

[17] Oscar Nierstrasz, Stéphane Ducasse, Damien Pollet, Pharo By Example, Square
Bracket Associates, c/o Oscar Nierstrasz, 2010.

[18] Alexandre Bergel, Damien Cassou, Stéphane Ducasse, Jannik Laval, Deep Into
Pharo, Lulu. com, 2013.

[19] Hernán Wilkinson, Nicolás Chillo, Gabriel Brunstein, Mutation testing, 2009,
European Smalltalk User Group (ESUG 09). Brest, France. http://www.esug.org/
data/ESUG2009/Friday/Mutation_Testing.pdf.

[20] Mehrdad Abdi, Toward Zero-touch Test Amplification (Ph.D. thesis), Univer-
sity of Antwerp, Antwerp, Belgium, 2022, https://repository.uantwerpen.be/
docstore/d:irua:14939.

[21] André N. Meyer, Earl T. Barr, Christian Bird, Thomas Zimmermann, Today was
a good day: The daily life of software developers, IEEE Trans. Softw. Eng. 47
(5) (2021) 863–880.

[22] Sven Amann, Sebastian Proksch, Sarah Nadi, Mira Mezini, A study of visual
studio usage in practice, in: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 124–134.

[23] Roberto Minelli, Andrea Mocci, Michele Lanza, I know what you did last summer
- an investigation of how developers spend their time, in: 2015 IEEE 23rd
International Conference on Program Comprehension, 2015, pp. 25–35.

[24] Juraj Kubelka, Romain Robbes, Alexandre Bergel, Live programming and
software evolution: Questions during a programming change task, in: 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC),
2019, pp. 30–41.

[25] Steven L. Tanimoto, A perspective on the evolution of live programming, in:
Proceedings of the 1st International Workshop on Live Programming, LIVE ’13,
IEEE Press, Piscataway, NJ, USA, 2013, pp. 31–34, URL http://dl.acm.org/
citation.cfm?id=2662726.2662735.

[26] Christopher Parnin, A history of live programming, 2013, URL http://
liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/.

[27] Stéphane Ducasse, Manuel Oriol, Alexandre Bergel, Challenges to support auto-
mated random testing for dynamically typed languages, in: Proceedings of the
International Workshop on Smalltalk Technologies, IWST ’11, ACM, New York,
NY, USA, 2011, pp. 9:1–9:6.

[28] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, Darko Marinov, An empirical
analysis of flaky tests, in: 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, in: FSE 2014, Association for Computing
Machinery, New York, NY, USA, 2014, pp. 643–653.

[29] August Shi, Jonathan Bell, Darko Marinov, Mitigating the effects of flaky tests
on mutation testing, in: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, in: ISSTA 2019, Association for
Computing Machinery, New York, NY, USA, 2019, pp. 112–122.

[30] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, Danny Dig,
Usage, costs, and benefits of continuous integration in open-source projects,
in: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, in: ASE 2016, Association for Computing Machinery, New
York, NY, USA, 2016, pp. 426–437.

[31] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, Andy Zaidman, Continuous delivery practices
in a large financial organization, in: 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2016, pp. 519–528.

[32] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik,
Mark GJ van den Brand, Continuous integration in a social-coding world:
Empirical evidence from GitHub, in: 2014 IEEE International Conference on
Software Maintenance and Evolution, IEEE, 2014, pp. 401–405.

[33] GitHub, GitHub actions usage limits, billing, and administration, 2022,
[on line] https://docs.github.com/en/actions/learn-github-actions/usage-limits-
billing-and-administration — last accessed In February 2022.

[34] GitHub, About custom actions, 2022, [on line] https://docs.github.com/en/
actions/creating-actions/about-custom-actions — last accessed In May 2022.

[35] GitHub, Storing workflow data as artifacts, 2022, [on line] https://docs.github.
com/en/actions/using-workflows/storing-workflow-data-as-artifacts — last ac-
cessed In May 2022.

[36] GitHub, Reusing workflows, 2022, [on line] https://docs.github.com/en/actions/
using-workflows/reusing-workflows — last accessed In May 2022.

http://refhub.elsevier.com/S2590-1184(23)00065-5/sb1
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb1
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb1
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb1
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb1
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb2
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb3
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb3
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb3
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb3
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb3
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb4
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb4
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb4
http://arxiv.org/abs/1503.05807
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb6
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb6
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb6
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb6
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb6
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb7
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb7
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb7
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb7
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb7
http://arxiv.org/abs/1909.04770
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb9
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb9
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb9
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb9
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb9
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb10
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb10
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb10
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb10
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb10
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb11
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb11
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb11
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
https://github.com/hscrocha/TestAmplificationBotReproductionPackage
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb12
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb12
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb12
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb12
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb12
https://github.com/STAMP-project/docs-forum/blob/master/docs/d57_uc_validation_report-final.pdf
https://github.com/STAMP-project/docs-forum/blob/master/docs/d57_uc_validation_report-final.pdf
https://github.com/STAMP-project/docs-forum/blob/master/docs/d57_uc_validation_report-final.pdf
https://github.com/STAMP-project/docs-forum/blob/master/docs/d57_uc_validation_report-final.pdf
https://github.com/STAMP-project/docs-forum/blob/master/docs/d57_uc_validation_report-final.pdf
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb14
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb14
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb14
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb15
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb16
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb16
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb16
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb16
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb16
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb17
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb17
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb17
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb18
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb18
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb18
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
https://repository.uantwerpen.be/docstore/d:irua:14939
https://repository.uantwerpen.be/docstore/d:irua:14939
https://repository.uantwerpen.be/docstore/d:irua:14939
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb21
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb21
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb21
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb21
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb21
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb22
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb22
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb22
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb22
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb22
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb23
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb23
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb23
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb23
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb23
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb24
http://dl.acm.org/citation.cfm?id=2662726.2662735
http://dl.acm.org/citation.cfm?id=2662726.2662735
http://dl.acm.org/citation.cfm?id=2662726.2662735
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb27
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb28
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb29
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb30
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb31
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb32
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/creating-actions/about-custom-actions
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/reusing-workflows

Journal of Computer Languages 78 (2024) 101255M. Abdi et al.
[37] Paul Ammann, Jeff Offutt, Introduction To Software Testing, Cambridge
University Press, 2016.

[38] Mohammad Ghafari, Carlo Ghezzi, Konstantin Rubinov, Automatically identifying
focal methods under test in unit test cases, in: Source Code Analysis and
Manipulation (SCAM), 2015 IEEE 15th International Working Conference on,
IEEE, 2015, pp. 61–70.

[39] Wikipedia, Fitness proportionate selection, 2020, [on line] https://en.wikipedia.
org/wiki/Fitness_proportionate_selection — last accessed In February 2022.

[40] Jeremias Rö𝛽ler, Gordon Fraser, Andreas Zeller, Alessandro Orso, Isolating failure
causes through test case generation, in: Proceedings of the 2012 International
Symposium on Software Testing and Analysis, 2012, pp. 309–319.

[41] Jifeng Xuan, Xiaoyuan Xie, Martin Monperrus, Crash reproduction via test case
mutation: let existing test cases help, in: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 910–913.

[42] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller,
Anant Agarwal, Application heartbeats for software performance and health,
SIGPLAN Not. 45 (5) (2010) 347–348.

[43] Samuel Kounev, Peter Lewis, Kirstie L Bellman, Nelly Bencomo, Javier Camara,
Ada Diaconescu, Lukas Esterle, Kurt Geihs, Holger Giese, Sebastian Götz, et al.,
The notion of self-aware computing, in: Self-Aware Computing Systems, Springer,
2017, pp. 3–16.

[44] Jianyi Zhou, Junjie Chen, Dan Hao, Parallel test prioritization, ACM Trans. Softw.
Eng. Methodol. 31 (1) (2021).

[45] G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, B. van Ryseghem, Bootstrapping
reflective systems: The case of pharo, Sci. Comput. Programm. 96 (2014) 141–
155, Special issue on Advances in Smalltalk based Systems, URL https://www.
sciencedirect.com/science/article/pii/S0167642313002797.

[46] Clément Béra, Eliot Miranda, Tim Felgentreff, Marcus Denker, Stéphane Ducasse,
Sista: Saving optimized code in snapshots for fast start-up, in: Proceedings of
the 14th International Conference on Managed Languages and Runtimes, in:
ManLang 2017, Association for Computing Machinery, New York, NY, USA,
2017, pp. 1–11.

[47] Martín Dias, Damien Cassou, Stéphane Ducasse, Representing code history with
development environment events, in: IWST-2013-5th International Workshop on
Smalltalk Technologies, 2013.

[48] Nienke Nijkamp, Carolin Brandt, Andy Zaidman, Naming amplified tests based
on improved coverage, in: 2021 IEEE 21st International Working Conference on
Source Code Analysis and Manipulation (SCAM), 2021, pp. 237–241.

[49] Wessel Oosterbroek, Carolin Brandt, Andy Zaidman, Removing redundant state-
ments in amplified test cases, in: 2021 IEEE 21st International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2021, pp.
242–246.

[50] Simon Urli, Zhongxing Yu, Lionel Seinturier, Martin Monperrus, How to design
a program repair bot? Insights from the repairnator project, in: 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), 2018, pp. 95–104.

Mehrdad Abdi is a senior software test engineer at Nokia,
Antwerp, Belgium. He obtained his Ph.D. from the Uni-
versity of Antwerp under the supervision of Prof. Serge
Demeyer in 2022. In his Ph.D., he studied software testing,
more specifically test amplification, in the context of ecosys-
tems. Before his PhD, he was working as a software security
engineer for 5 years. His main research/work interest is
software testing.
12
Henrique Rocha since 2021 has been an assistant professor
at Loyola University Maryland, USA. He completed his
PhD in 2016 in ASERG (Applied Software Engineering
Research Group) at UFMG (Federal University of Minas
Gerais), Brazil. He was a post-doctoral researcher at Rmod
Inria-Lille, France from 2017-2018, and at AnSyMo in
the University of Antwerp, Belgium from 2019–2021. Af-
ter working at Rmod, Henrique developed a newfound
appreciation and respect for Smalltalk. His research inter-
ests involve Applied and Empirical Software Engineering,
Software Testing and maintenance, and Blockchain-oriented
Software engineering.

Alexandre Bergel is a Computer Scientist at RelationalAI,
Switzerland. Until 2022, he was an Associate Professor and
researcher at the University of Chile. Alexandre Bergel and
his collaborators carry out research in software engineering.
Alexandre Bergel has authored over 170 articles, published
in international and peer-reviewed scientific forums, includ-
ing the most competitive conferences and journals in the
field of software engineering. Alexandre has participated
in over 175 program committees of international events.
Several of his research prototypes have been turned into
products and adopted by major companies in the semicon-
ductor industry, certification of critical software systems,
and aerospace industry. Alexandre gave talks to prominent
research institutes, including NASA JPL and the Deutsches
Zentrum für Luft-und Raumfahrt (DLR). Alexandre is a mem-
ber of the editorial board of Empirical Software Engineering.
Alexandre authored 4 books on Pharo, Artificial Intelligence,
and Data Visualization.

Serge Demeyer is a professor at the University of Antwerp
and member of the AnSyMo (Antwerp System Modelling)
research group. Serge Demeyer is the chair of the NEXOR
interdisciplinary research consortium and an affiliated mem-
ber of the Flanders Make Research Centre. In 2007 he
received a ‘‘Best Teachers Award" from the Faculty of
Sciences at the University of Antwerp and is still very active
in all matters related to teaching quality. His main research
interest concerns software evolution, more specifically how
to strike the right balance between reliability (striving for
perfection) and agility (optimizing for adaptability). He
is an active member of the corresponding international
research communities, serving in various conference orga-
nization and program committees. He has written a book
entitled ‘‘Object-Oriented Reengineering’’ and edited a book
on ‘‘Software Evolution’’. He also authored numerous peer
reviewed articles, many of them in top conferences and
journals. He has an h-index of 42 according to Google
Scholar. Serge Demeyer completed his M.Sc. in 1987 and
his PhD in 1996, both at the ‘‘Vrije Universiteit Brussel’’.
After his PhD, he worked for three years in Switzerland,
where he served as a technical co-ordinator of a European
research project. Switzerland remains near and dear to his
heart, witness the sabbatical leave during 2009–2010 at the
University of Zürich in the research group SEAL. The rest
of Europe is explored territory as well, with a sabbatical
stay in Lille, France (INRIA-RMOD) and in Lund, Sweden
(RISE-SICS and SERG).

http://refhub.elsevier.com/S2590-1184(23)00065-5/sb37
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb37
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb37
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb38
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb40
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb40
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb40
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb40
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb40
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb41
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb41
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb41
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb41
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb41
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb42
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb42
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb42
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb42
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb42
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb43
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb44
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb44
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb44
https://www.sciencedirect.com/science/article/pii/S0167642313002797
https://www.sciencedirect.com/science/article/pii/S0167642313002797
https://www.sciencedirect.com/science/article/pii/S0167642313002797
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb46
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb47
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb47
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb47
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb47
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb47
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb48
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb48
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb48
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb48
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb48
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb49
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50
http://refhub.elsevier.com/S2590-1184(23)00065-5/sb50

	A test amplification bot for
	Introduction
	Test Amplification
	Amplification Algorithm
	Challenges for Test Amplification

	Design of the Proof-of-Concept
	Small-Amp and Pharo
	Integration with GitHub-Actions
	Test-Method Prioritization
	Sharding
	Crash Resilience

	Evaluation
	Dataset
	Experimental Design and Results
	RQ1: Is it possible to fully automatically amplify a test suite using GitHub-Actions?
	RQ2: How does the prioritization heuristic affect the test amplification performance?
	RQ3: How many duplicated mutants are created after sharding?
	RQ4: Does sandboxing circumvent crashes?

	Threats to validity
	Related Work
	Conclusion
	Reproduction Package
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

