Empirical Software Engineering (2022) 27:128
https://doi.org/10.1007/510664-022-10169-8

®

Check for
updates

Small-Amp: Test amplification in a dynamically typed
language

Mehrdad Abdi' © . Henrique Rocha? - Serge Demeyer’ - Alexandre Bergel®

Accepted: 13 April 2022
© The Author(s) 2022

Abstract

Some test amplification tools extend a manually created test suite with additional test cases
to increase the code coverage. The technique is effective, in the sense that it suggests strong
and understandable test cases, generally adopted by software engineers. Unfortunately, the
current state-of-the-art for test amplification heavily relies on program analysis techniques
which benefit a lot from explicit type declarations present in statically typed languages. In
dynamically typed languages, such type declarations are not available and as a consequence
test amplification has yet to find its way to programming languages like Smalltalk, Python,
Ruby and Javascript. We propose to exploit profiling information —readily obtainable by
executing the associated test suite— to infer the necessary type information creating special
test inputs with corresponding assertions. We evaluated this approach on 52 selected test
classes from 13 mature projects in the Pharo ecosystem containing approximately 400 test
methods. We show the improvement in killing new mutants and mutation coverage at least
in 28 out of 52 test classes (*53%). Moreover, these generated tests are understandable
by humans: 8 out of 11 pull-requests submitted were merged into the main code base
(~72%). These results are comparable to the state-of-the-art, hence we conclude that test
amplification is feasible for dynamically typed languages.

Communicated by: Carlo A. Furia

< Mehrdad Abdi
mehrdad.abdi @uantwerpen.be

Henrique Rocha
henrique.rocha@gmail.com

Serge Demeyer
serge.demeyer @uantwerpen.be

Alexandre Bergel
abergel @dcc.uchile.cl

University of Antwerp — Flanders Make vzw, Antwerp, Belgium
2 Loyola University Maryland, Baltimore, MD, USA

3 Relational AT (USA) and Department of Computer Science, University of Chile (Chile),
Santiago, Chile

Published online: 08 July 2022 A Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10169-8&domain=pdf
http://orcid.org/0000-0001-6984-3098
mailto: mehrdad.abdi@uantwerpen.be
mailto: henrique.rocha@gmail.com
mailto: serge.demeyer@uantwerpen.be
mailto: abergel@dcc.uchile.cl

128 Page2of55 Empir Software Eng (2022) 27:128

Keywords Test amplification - Pharo smalltalk

1 Introduction

Modern software projects contain a considerable amount of hand-written tests which
assure that the code does not regress when the system under test evolves. Indeed, sev-
eral researchers reported that test code is sometimes larger than the production code under
test (Daniel et al. 2009; Tillmann and Schulte 2006; Zaidman et al. 2011). More recently,
during a large scale attempt to assess the quality of test code, Athanasiou et al. reported six
systems where test code takes more than 50% of the complete codebase (Athanasiou et al.
2014). Moreover, Stack Overflow posts mention that test to code ratios between 3:1 and 2:1
are quite common (Agibalov 2015).

Test amplification is a field of research which exploits the presence of these manually
written tests to strengthen existing test suites (Danglot et al. 2019a). The main motivation of
test amplication is based on the observation that manually written test cases mainly exercise
to the default scenarios and seldom cover corner cases. Nevertheless, experience has shown
that strong test suites must cover those corner cases in order to effectively reveal failures (Li
and Offutt 2016). Test amplification therefore automatically transforms test-cases in order
to exercise the boundary conditions of the system under test.

Danglot et al. conducted a literature survey on test amplification, identifying a range of
papers that take an existing test suite as the seed value for generating additional tests (Fraser
and Arcuri 2012; Rojas et al. 2016; Yoo and Harman 2012). This culminated in a tool
named DSPOT which represents the state-of-the-art in the field (Baudry et al. 2015; Danglot
et al. 2019b). In these papers, the authors demonstrate that DSPOT is effective, in the sense
that the tool is able to automatically improve 26 test classes (out of 40) by triggering new
behaviors and adding valuable assertions. Moreover, test cases generated with DSPOT are
well perceived by practitioners — 13 (out of 19) pull requests with amplified test have been
incorporated in the main brach of existing open source projects (Danglot et al. 2019b).

Unfortunately, the current state-of-the-art for test amplification heavily relies on program
analysis techniques which benefit a lot from explicit type declarations present in stati-
cally typed languages. Not surprisingly, previous research has been confined to statically
typed programming languages including Java, C, C++, C#, Eiffel (Danglot et al. 2019a). In
dynamically typed languages, performing static analysis is difficult since source code does
not embed type annotation when defining variable. As a consequence test amplification
has yet to find its way to dynamically-typed programming languages including Smalltalk,
Python, Ruby, Javascript, etc.

In this paper, we demonstrate that test amplification is feasible for dynamically typed
languages by exploiting profiling information readily available from executing the test suite.
As a proof of concept, we present SMALL-AMP which amplifies test cases for the dynami-
cally typed language Pharo (Black et al. 2010; Bergel et al. 2013); a variant of Smalltalk
(Goldberg and Robson 1983). We argue that Pharo is a good vehicle for such a feasibility
study, because it is purely object-oriented and it comes with a powerful program analysis
infrastructure based on metalinks (Costiou et al. 2020). Pharo uses a minimal computa-
tion model, based on object and message passing, thus reducing possibilities to experiences
biases due to some particular and singular language constructions. Moreover, Pharo has a
growing and active community with several open source projects welcoming pull requests

@ Springer

Empir Software Eng (2022) 27:128 Page 3 of 55 128

from outsiders. Consequently, we replicate the experimental set-up of DSPOT (Danglot et al.
2019b) by including a quantitative and qualitative analysis of the improved test suite.

This paper is an extension of a previous paper presenting the proof-of-concept to the
Pharo community (Abdi et al. 2019b). As such, we make the following contributions:

— Small-Amp, a test amplification algorithm and tool, implemented in Pharo Smalltalk.
To the best of our knowledge this is the first test amplification tool for a dynamically
typed language.

— Demonstrating the use of dynamic type profiling as a substitute for type declarations
within a system under test.

— Quantitative evaluation of our test amplification for the Pharo dynamic programming
language on 13 mature projects with good testing and maintenance practices. We
repeated the experiment three times. For 28 out of 52 test classes we see an improve-
ment in killing new mutants and consequently the mutation score. Our evaluation shows
that generated test methods are focused (i.e. they do not overwhelm the developer) and
all amplification steps are necessary to obtain strong and understandable tests.

— Qualitative evaluation of our approach by submitting pull requests containing amplified
tests on 11 active projects. 8 of them (~72%) were accepted and successfully merged
into the main branch.

— We contribute to open science by releasing our tool as an open-source package under the
MIT license (https://github.com/mabdi/small-amp). The experimental data is publicly
available as a replication package (https://github.com/mabdi/SmallAmp-evaluations).

The remainder of this paper is organised as follows. Section 2, provides the necessary
background information on test amplification and the Pharo ecosystem. Sections 3 and 4
explain the inner workings of SMALL-AMP, including the use of dynamic profiling as a
substitute for static type information. Section 5 discusses the quantitative and qualitative
evaluation performed on 13 mature open source projects; a replication of what is reported
by Danglot et al. (2019a). Section 6 enumerates the threats to validity while Section 7 dis-
cusses related work and Section 8 lists limitations and future work. Section 9 summarizes
our contributions and concludes our paper.

2 Background
2.1 Test amplification

In their survey paper, Danglot et al. define test amplification as follows:

Test amplification consists of exploiting the knowledge of a large number of test
cases, in which developers embed meaningful input data and expected properties in
the form of oracles, in order to enhance these manually written tests with respect to an
engineering goal (e.g., improve coverage of changes or increase the accuracy of fault
localization). Danglot et al. (2019a)

Test amplification is a not replacement for other test generation techniques and should be
considered as a complementary solution. The main difference between test generation and
test amplification is the use of an existing test suite. Most work on test generation accept
only the program under test or formal specifications and ignore the original test suite which
is written by an expert.

@ Springer

https://github.com/mabdi/small-amp
https://github.com/mabdi/SmallAmp-evaluations

128 Page 4 of 55 Empir Software Eng (2022) 27:128

6 SmallBankTest >> testWithdrawAll

-

1 SmallBank >> withdraw: amount 17 | b success |

2 balance >= amount 18 b := SmallBank new.

3 ifTrue: [19 b deposit: 30.

4 lzalance = balance — amount. 20 self assert: (b balance = 30).
5 R true]. 21 success := b withdraw: 30.

6 false 22 self assert: success.

7 _ 23 self assert: (b balance = 0).
s SmallBankTest >> testWithdraw 04

9 | b| 25 SmallBankTest >> testWithdrawOnZero
10 b := SmallBank new. 26 | b success |

1 b deposit: 100. 27 b := SmallBank new.

12 self assert: (b balance = 100). 28 success ‘= b withdraw: 30.
13 b withdraw: 30. 29 self deny: success.

14 self assert: (b balance = 70). 20 self assert: (b balance = 0).

15

Listing 1 testWithdraw amplified into testWithdrawOnAll and testWithdrawOnZero

A typical test amplification tool is based on two complementary steps.

(i) Input amplification. The existing test code is altered in order to force previously
untested paths. This involves changing the set-up of the object under test, provid-
ing parameters that represent boundary conditions. Additional calls to state-changing
methods of the public interface are injected as well.

(i) Assertion amplification. Extra assert statements are added to verify the expected out-
put of the previously untested path. The system under test is then used as an oracle:
while executing the test the algorithm inspects the state of the object under test and
asserts the corresponding values.

The input amplification step is typically governed by a series of amplification operators.
These operators represent syntactical changes to the test code that are likely to force new
paths in the system under test. To verify that this is indeed the case, the amplification tool
compares the (mutation) coverage before and after the amplification operator. It is beyond
the scope of this paper to explain the details of mutation coverage; we refer the interested
reader to the survey by Papadakis et al. (2019).

We illustrate the input and assertion amplification steps via an example based
on SmallBank!' and its test class SmallBankTest in Listing 1. In this
example testWithdraw is the original test method while testWithdrawAll
and testWithdrawOnZero are two new test methods derived from it. In the
testWithdrawAll, the input amplification has changed the literal value of 100 with
30 (line 19), and the assertion-amplification step regenerated the assertions on the bal-
ance (line 20) and added a missing assertion on the status of the operation (line 22). The
testWithdrawAll test method thus verifies the boundary condition of withdrawing by
an amount equal to the balance. In the testWithdrawOnZero, on the other hand, an
input amplifier has removed the call to the deposit : method in line 11. This test method
now verifies the boundary condition that calling a withdraw: with an amount more than
zero when the balance is zero is not allowed. This is illustrated by the extra assertions in
line 29 and 30.

! Available at: https://github.com/mabdi/smalltalk-SmallBank

@ Springer

https://github.com/mabdi/smalltalk-SmallBank

Empir Software Eng (2022) 27:128 Page 5 of 55 128

2.2 Pharo

Pharo [http://www.pharo.org/] is a pure object oriented language based on Smalltalk (Black
et al. 2010; Bergel et al. 2013). It is dynamically typed; i.e. there are no type declarations
for variables, parameters, nor return values statically, but dynamically, the environment
enforces that all objects to have a type and only respond to messages part of the inter-
face. It includes a run-time engine and an integrated development environment with code
browsers and live debugging. Pharo users work in a live environment called Pharo image
where writing code and executing it is tied seamlessly together.

Invoking a method in Pharo is called message sending. As a pure language, every action
in Pharo is achieved by sending messages to objects. There are no predefined operators, like
+ or -, nor control structures like i £ or while. Instead, a Pharo program sends the message
#+ or #- to anumber object, a #1fTrue: ifFalse: message to a boolean object, or the
message #whileTrue: to a boolean returning block object. Any message can be sent to
any object. In case the message is not part of the object interface, instead of a compile-time
syntax error, the system raises a MessageNotUnderstood exception in runtime. Thus,
when transforming test code, a test amplification tool should be attentive to not create faulty
test codes.

Like Java, all ordinary classes inherit from the class Object and every class can
add instance variables and methods. Unlike Java, all instance variables are private and all
methods are public. Pharo encourages programmers to write short methods with intention
revealing names so that the code becomes self explanatory.

Protocols Pharo, and Smalltalk in general, features protocols to organize the methods
defined in classes. The notion of protocol is a tag of a method and it acts like a metadata
provided by the integrated development environment. As such, classifying a method under
a particular protocol has no impact on the behavior.

Since all instance variables are private in Pharo, in order to make them accessible by
the external world, accessor methods should be provided which are typically grouped into
the protocol accessing. In a similar vein, all methods used to set the content of an
object upon initialization are grouped into the protocol instance creation. Long
lived classes who evolve over time, use the deprecated protocol, signalling that these
methods will be removed from the public interface in the near future. And while all methods
are public, Pharo uses the protocol private to mark methods which are not expected to
be used from the outside. However, as we mentioned earlier, protocols are a tag and Pharo
does not block an access to a private method.

The most similar concepts to protocols in other languages are naming conventions, anno-
tations and also access modifiers. For instance, a Java equivalent for methods in accessing
protocol is following a naming convention like setVar () and getVar (). In a similar
vein, Java uses @Deprecated annotation to identify the deprecated methods. An equiva-
lent for methods in private protocol in Python is the naming convention of using underscore
before the name of private methods, but Java uses access modifiers for this purpose.

2.3 Coding Conventions in Dynamically Typed Languages
In this section, we describe typical coding conventions that are used by programmers to
compensate for the lack of type declarations. When we transform code (like we do when

amplifying tests), special care must be taken to adhere to such coding conventions otherwise
the code will look artificial and will decrease chances to be adopted by test engineers. Our

@ Springer

http://www.pharo.org/

128 Page 6 of 55 Empir Software Eng (2022) 27:128

perspective comes from Pharo / Smalltalk (as documented in Ducasse 2019), but similar
coding conventions must be adhered to when amplifying tests in Python, Ruby or Javascript.

Untyped Parameters In dynamically typed languages, when defining a method which
accepts a parameter, the type of the parameter is not specified. However, it is a conven-
tion to name the parameter after the class one expects or the role it takes. This is illustrated
by the code snippet in Listing 2. Line 1 specifies that this is a method drawOn: defined
on the class Morph which expects one parameter. The parameter itself is represented by
an untyped variable aCanvas however the name of the variable suggests that the method
expects an instance of the class Canvas, or one of its subclasses. Line 7 on the other
hand specifies that the method withdraw: expects one parameter and its role is to be an
amount. There is no clue on the type of the parameter (integer, longinteger, float, ...); all
we can infer from looking at the code is that we should be allowed to pass it as an argument
when invoking the messages >= (line 8) and - (line 10) on balance.

= When passing a parameter to a method, a test amplification tool has no guaranteed
way of knowing the expected type. The name of the parameter only hints at the
expected type, hence during input assertion special care must be taken.

No Return Types In dynamically typed languages, there is no explicit declaration of the
return type of a method. In Pharo, all computation is expressed with objects sending mes-
sages and a message sends always returns an object. By default a method returns the
receiving object, which is the equivalent of the void return type in Java. However a
program can explicitly return another value using " followed by an expression.

This is illustrated in Listing 3, showing the methods printOn: (displays the receiver on
a given stream) and printString (which returns a string representation of the receiver).
printOn: is the equivalent of a void call thus returns the receiving object; however the
method is declared on Object so the receiver object can be anything. printString on
the other hand returns the result of sending the message contents to aStream. The exact
type of what is returned is difficult to infer via static code analysis. Smalltalk programmers
would assume that the return type is a St ring because of the intention revealing name of
the method. However, there is no guarantee that this is indeed the case. Thus, when a test
amplification tool manipulates the result of a method, it cannot easily infer the type of what
is returned.

= The lack of explicit return types makes it hard to manipulate the result of a
method call while ensuring that no MessageNotUnderstood exceptions will
be thrown.

Different Return Types In addition to the lack of return type declarations, it is also possible
to write a method that can returns different types of values. For example, in Listing 4 the

7 SmallBank >> withdraw: amount

1 Morph >> drawOn: aCanvas s balance >= amount
2 aCanvas fillRectangle: self o ifTrue: |
bc.Junds] 10 balance := balance —
3 fillStyle: self fillStyle amount.
4 borderstyle: self BorderStyle. i ~ true |.
5 12 ~ false
6

Listing 2 Examples of naming conventions for untyped parameters

@ Springer

Empir Software Eng (2022) 27:128 Page 7 of 55 128

1 Object >> printOn: aStream 10 Object>>printString

2 |_t|t|e | 11 | aStream |

3 title := self class name. 12 aStream := WriteStream on:
4 aStream nextPutAll: 13 (String new: 16).

5 (title first |sVov:/e| i 14 self printOn: aStream.

6 ifTrue: ['an '] 15 ~aStream contents

7 ifFalse: ['a "]);

8 nextPutAll: title

Listing 3 Example of a void method (left) or function method (right)

method someMethod: can return an instance of the classes Integer, Boolean or Object
(the default return value is self).

As a result, removing the return operator (a common mutation operator) will not cause
a syntax error yet may cause a change in the return type of a methods. For example, in
Listing 4 the method width (lines 5 and 6), if the return operator is removed in the mutation
testing, the type of the return value will be converted from a number to a Shape object.

= Methods in dynamically typed languages can return various types. Test amplifica-
tion tools must be aware that a small change in the code may lead to changes in the
returned type. Consequently, assertions verifying the result of a method call must
be adapted.

Accessor Methods In Pharo, all instance variables are private and only accessible by the
object itself. If one wants to manipulate the internal state of an object one should imple-
ment a method for it, as illustrated in Listing 5 which shows the setter method x : and the
getter method x. In Pharo, such accessor methods are typically collected in the protocol
accessing and are a convenient way for programmers to look for ways to read or write
the internal state of an object.

Such accessor methods are especially relevant for all test generation algorithms (Fischer
et al. 2020). For test amplification in particular, the setter methods are necessary in the input
amplification step to force the object into a state corresponding to a boundary condition.
The getter methods are necessary in the assertion amplification step to verify whether the
object is in the appropriate state. However, there is no explicit declaration for the type of
the parameter passed to the setter method x: nor for the type to be returned by the getter
method x.

= When manipulating the state of an object one cannot rely on type declarations to
infer which parameter to pass to a setter method and which result to expect from a
getter method.

Pass-by-reference In dynamic languages including Pharo, when sending messages, all
arguments are passed by reference. This may imply that sometimes the state is changed and
sometimes it is not. This is illustrated by the method r in Listing 6, which returns the radius

'

1 Example >> someMethod: anint 5 Shape >> width
2 anint = 1 ifTrue: [~ 1] o ~ width
3 anint = 0 ifTrue: [~ false]

Listing4 Examples of a changing the return type

@ Springer

128 Page8of55 Empir Software Eng (2022) 27:128

3 Point >> x: anlnteger

1 Point >> x 4 x := anlnteger

2 X

Listing 5 Example of a getter (left) and a setter method (right)

in polar coordinates. This involves some calculation (the invocation of dotProduct:)
which passes the receiver object as a reference. There is no “pass-by-value” type declara-
tion for dot Product :, so one cannot know whether the internal state is changed or not.
If dotProduct : does not alter the internal state it may be used as a pure accessor method
during assertion amplification anywhere in the test. However, if the accessor method does
change the internal state the order in which the accessor methods are called has an effect on
the outcome of the test.

= The pass-by-reference parameter passing makes it difficult to distinguish pure
accessor methods. Pure accessor methods can be inserted anywhere during asser-
tion amplification, for accessor methods changing the internal state one must take
into account the calling order.

Cascading Listing 7 shows the archetypical Hel1lo World example. Line 2 specifies that
this is a method helloWor1ld defined on a class Hel1loWorld. Line 4 and 6 each sends
the message cr (a message without any parameters) to the global variable Transcript
which emits a carriage return on the console. Line 5 sends the message show: with as
parameter the string *hello world’ to the global variable Transcript which writes
out the expected message.

However, a Pharo programmer would never write this piece of code like that. When a
series of messages is being sent to the same receiver, this can be expressed more succinctly
as a cascade. The receiver is specified just once, and the sequence of messages is separated
by semi-colons as illustrated on lines 7—10.

Instance Creation Cascading is frequently used when creating instances of a class as illus-
trated by the createBorder example in the left of Listing 8. In line 2 it creates a new
SimpleBorder object and then initialises the object with color blue (line 3) and width
2 (line 4). During input amplification we need to change the internal state of the object
under test, hence it is tempting to inject extra calls in such a cascade. However, because we
cannot distinguish between state-changing and state-accessing methods, we risk injecting
errors. The code snippet to the right illustrates that injecting an extra 1sComplex call (a
call to a state-accessing method) at the end of the cascade erroneously returns a boolean
instead of an instance of SimpleBorder. This will eventually result in a run-time type error
via a messageNotUndersood exception when the program tries to use the result of
createBorderErroneous.

= When injecting additional calls during instance creation, one runs the risk of
returning an inappropriate value.

1 Point >>r
2 " (self dotProduct: self) sqrt

Listing 6 Is r a pure accessor method that does not alter the internal state?

@ Springer

Empir Software Eng (2022) 27:128 Page 9 of 55 128

6 HelloWorld >> helloWorldCascading
1 HelloWorld >> helloWorld - Transcript
2 Transcript cr. s cr:
3 Transcript show: 'hello world'. o show: "hello world’:
4 Transcript cr. 10 cr.
5

Listing7 A sequence of messages sent to the same receiver object (left) is written as a cascade (right)

Like most dynamically typed languages, Pharo has a lot of coding
conventions. When transforming code (for instance, when amplifying
tests) we must adhere to these conventions. However, the lack of ex-
plicit type information hinders static analysis, needed to identify rele-
vant code constructs.

3 SmALL-AmP Design

In this section, we explain the design of the SMALL-AMP which is an adaption and extension
of DSPOT (Baudry et al. 2015; Danglot et al. 2019b) for the Pharo ecosystem. DSPOT is
an opensource? test amplification tool to amplify tests for Java programs. Our SMALL-AMP
implementation is also publicly available® on GitHub.

3.1 Main Algorithm

The main amplification algorithm is presented in Algorithm 1 and represents a search-based
test amplification algorithm. The algorithm accepts a class under test (CUT) and its related
test class (TC) and returns the set of amplified test methods (ATM). In addition, the algo-
rithm needs a set of input amplification operators (AMPS) and is governed by a series of
hyperparameters:

Niteration — This parameter specifies the number of iterations and shows the maximum
number of transformations on a test input. The default value for this parameter is 3.

— Nmaxinputs — This parameter specifies the maximum number of generated test inputs that
algorithm keeps. It discards other test inputs. The default value for this parameter is 10.

Initially, the code of CUT and TC is instrumented to allow for dynamic profiling. The
test class is executed, all required information is collected and then the instrumentation is
removed again. This extra information including the type information allows us to perform
input amplification more efficiently and circumvent the lack of type information in the
source code (line 2). We discuss about the profiling in Section 4.1.

The main loop of the algorithm amplifies all test methods one by one (line 3). V is the
set of test inputs, thus test methods without assertion statements. In the beginning, V has
only one element which is obtained from removing assertion statements in the original test
method (line 4). U is the set of generated test methods which are generated by adding new
assertion statements to the elements in V (lines 5). Then the coverage is calculated using the

2https://github.com/STAMP-project/DSpot
3https://github.com/mabdi/small-amp

@ Springer

https://github.com/STAMP-project/DSpot
https://github.com/mabdi/small-amp

128 Page 10 of 55 Empir Software Eng (2022) 27:128

6 TestBorder >> createBorderErroneous
1 TesEB;rderI >B>dcreateBorder . ~ SimpleBorder new
2 Imlp € Corl erbTeW 8 color: Color blue;
3 color: Color blue; k. .
' 9 width: 2;
H . " " .
4 width: 2. "returns self 10 isComplex. "returns a boolean"

Listing 8 Injecting extra statements may result in type errors

generated test methods accumulated in U and the tests increasing the coverage are added to
the final result. SMALL-AMP uses mutation score as a coverage criteria (line 6).

Algorithm 1 SMALL-AMP amplification algorithm.

input : CUT: class-under-test

input : TC: original test class

input : AMPS: a set of input amplification operators
input : hyperparameters {Niteration» NmaxInputs }
output: ATM: set of amplified test methods

1 ATM < {};

2 extralnfo < profileCollect (CUT, TC);

3 foreacht € TC do

4 V <« {removeAssertions (1) };

5 U < amplifyAssertions (V);

6 ATM <« ATM U {x € U| x improves mutation score};

7 for i < 0to Niwrarion do

8 TMP « {};

9 for each amp € AMPS do

10 | TMP < TMP UamplifyInputs (amp, V, extralnfo) ;
11 end

12 V <« reduce (TMP, Nmaxlnputs) 5

13 U < amplifyAssertions (V);

14 ATM < ATM U {x € U| x improves mutation score};
15 end

16 end

17 ATM < improveReadability (ATM);

8 return ATM

—

In the inner loop of the algorithm (lines 7 to 15), SMALL-AMP generates additional tests
by repeating the following steps Niteration times:

1. SMALL-AMP applies different input amplification operators on V (the current test inputs)
to create new variants of test methods accumulated in the variable TMP (line 10). We
discuss input amplification in Section 3.2.

2. SMALL-AMP reduces TMP by keeping only Npaxinputs of current inputs and discarding
the rest (line 12). We discuss input reduction in Section 4.2.

3. SMALL-AMP injects assertions on the remaining test inputs in V and stores the result in
U (line 13). We discuss assertion amplification in Section 3.3.

4. SMALL-AMP selects all test methods in U that increase mutation score and adds them to
the final result ATM (line 14). We discuss about test selection in Section 3.4.

@ Springer

Empir Software Eng (2022) 27:128 Page 11 of 55 128

After both loops have terminated, SMALL-AMP applies a set of post-processing steps to
increase the readability of the generated tests (line 17). We discuss these steps in Section 4.3.

Algorithm 1 is heavily inspired by DSPOT, but not entirely the same. In other words, we
have added a pre-process step (line 2) to collect the necessary information about CUT and
TC before entering the main loop. We also have added a post-processing step (line 17) to
make the output more readable. We discuss about extras to DSPOT algorithm in Section 4.

3.2 Input Amplification

During input amplification, existing test code is altered to force previously untested paths.
Input amplification involves changing the set-up of the object under test, passing arguments
which represent boundary conditions. Additional calls to state-changing methods of the
public interface are injected as well. Such changes are bound to fail the original assertions
of TC, therefore SMALL-AMP removes all assertions from a test ¢ in TC.

The test code itself is transformed via a series of Input Amplification Operators. These
change the code in such a way that they are likely to force untested paths and cover bound-
ary conditions. Input amplification operators are based on the genetic operators introduced
in Evolutionary Test Classes (Tonella 2004). Below we explain the Input Amplification
Operators adopted from DSPOT.

Amplifying Literals This input amplifier scans the test input source code to find literal
tokens (numbers, booleans, strings). Then it transforms the literal to a new literal based on
its type according to Table 1. For example, test input shown in Listing 9 is transformed into
testVectorGreater_L by manipulating the second element from the literal array.

Amplifying Method Calls This input amplifier scans the test input source code to find the
method invocations on an object. Then it transforms the source code by duplicating or
removing the method invocations. It also adds new method invocations on the objects. If
the method requires new values as arguments, the amplifier creates new objects. For prim-
itive parameters, a random value is chosen from the profiled values. For object parameters,
the default constructor is used i.e it creates a new instance by sending #new message to
the class. SMALL-AMP ignores private and deprecated methods (regarding to their proto-
col) when it adds a new method call. The type information required do safely apply these
transformations is obtained in the profiling step explained in Section 4.1 — p. 13.

Table 1 Transformations in]
literal amplification Type Transformation

Numbers 0,
increased and decreased values (+1 and —1),
doubled and halved values (x2 and +2),
negated value (x — 1)
replacing with an existing number from the test body
Booleans negate via not
Strings add a new random character to a random position
remove a character randomly
change a character randomly

replace by a random string in the same size

@ Springer

128 Page 12 of 55 Empir Software Eng (2022) 27:128

5 testVectorGreater L
1 testVectorGreater 6 [uw | -
2 | uw | 7 u = #(—11 1) asPMVector.
3 u := #(—1 0 1) asPMVector. N w:=u>0.
4 w:=u>0.

Listing 9 Example Literals Amplification Operator (line 3 vs. line 7)

3.3 Assertion Amplification

During the assertion amplification step, we inject assertion statements which verify the state
of the object under test. The object under test is then used as an oracle: while executing the
test the algorithm inspects the state of the object under test and asserts the corresponding
values. The assertion amplification step is based on Regression Oracle Checking (Xie 2006).

Note that assertion amplification is applied twice during the amplification algorithm
(Algorithm 1, in lines 5 and 13). There are two reasons for this seemingly redundant design.
(1) We assure that the original test method is assertion amplified as well. Since the test
inputs are reduced in line 12, there is a possibility that the original test method is discarded
and never reaches the assertion amplification in line 13. (2) We can run only assertion ampli-
fication by setting the value of Njserqrion = 0. This way no new tests will be generated, but
existing tests may become stronger because they check more conditions.

Observing State Changes Via Object Serialisation SMALL-AMP manipulates the test code
and surrounds each statement with a series of what we call “observer meta-statements” (see
Listing 10). Such meta-statements include a surrounding block to capture possible excep-
tions (lines 19-20 and 24-25) and calls to observer methods to capture the state of the
receiver (line 17 and line 18) and the return value (line 18 and line 23). When necessary,
temporary variables are added to capture intermediate return values (tmpl on line 21 and
line 23).

After manipulating the test method, SMALL-AMP runs the test to capture the values by the
observer methods. SMALL-AMP serializes objects by capturing the values from its accessor
methods. If the return value of an accessor method is another object, it recursively repeats
the object serialization up to Ngerialization times. Nerialization 15 @ configurable value (default
value is 3). The output of this step of assertion amplification is a set of trace logs which
reflect the object states.

14 testDeposit instrumented

1 testDeposit 15 | btmpl]

2 | b 16 [b := SmallBank for: 'JDoe’.
3 b:=SmallBank for: "JDoe’. 17 self observe: SmallBank.

4 b deposit: 100. 18 self observeRetVal: b.

5 19] on: Error do: [:ex |

6 20 self observeException: ex].
7 21 [tmpl:= b deposit: 100.

8 22 self observe: b.

9 23 self observeRetVal: tmpl.
10 24] on: Error do: [:ex |

H 25 self observeException: ex]

12
13

Listing 10 Injection of observer meta-statements

@ Springer

Empir Software Eng (2022) 27:128 Page 13 of 55 128

Identifying Accessor Methods SMALL-AMP relies on the Pharo/Smalltalk coding con-
ventions and therefore selects methods if they belong to protocols #accessing or
#testing or when their name is identical to one of the instance variables. From the
selected methods, all methods lacking an explicit return statement and all methods in the
protocols #private or #deprecated are rejected and the remaining are considered as
accessors.

Preventing Flaky Tests Via Trace Logs A flaky test is a test that may occasionally succeed
(green) or fail (red). This may happen if the test is asserting a non-deterministic value.
SMALL-AMP tries to detect non-deterministic values before making assertions on them. The
assertion amplification module, repeats collecting the trace logs for Nyjaxiness (default value
is 10) times. Then it compares the observed values. If a value is not identical between all
collected logs, SMALL-AMP marks it as non-deterministic.

Recursive Assertion Generation Based on the type of the observed value, zero, one or
more assert statements are generated. If the type is a variant of collection or an object, which
include other internal values, the assertion generator uses a recursive method to build valid
assertion statements. For non-deterministic values, the value is not asserted and only its type
is asserted. The output of the assertion amplification step is a passing (green) test with extra
assertions.

Intended Values Versus Actual Values During assertion amplification, the assertion state-
ments should the expected value which is deduced from an oracle. We assume that the
current implementation of the program is correct, and therefore we deduce the oracle from
the current state of the object under test. However, when there is a defect in the method
under test, the generated assertions would verify against an incorrect oracle. This is an
inherent limitation for both DSPOT and SMALL-AMP, inherited from Regression Oracle
Checking (Xie 2000).

Example Listing 11 shows an example of a trace log collected by line 22 from List-
ing 10 (left) and its recursive assertion statements (right). In this example, we point out

that the method t imestamp is an accessor method in SmallBank class which returns a

16

b 17 testDeposit withAssertions

2 type — SmallBank, 18 | b tmpl |

3 accessors: 19 b := SmallBank for: "JDoe’.

4 balance: 20 nom

5 flaky — false, 21 tmpl := b deposit: 100.

6) value — 100 22 self assert: b class equals: SmallBank.
7 timestamp: 23 self assert: b balance equals: 100.

8 flaky — true, 24 self assert: b timestamp class equals:
9 value — 1624 Integer. "flaky"

10 user: 25 self assert: b user class equals:

11 type — SmallBankUser, SmallBankUser.

12 accessors: 26 self assert: b user name equals: 'JDoe’
13 name: .

14 flaky — false, o7 no

15 value — "JDoe’

Listing 11 An example of a trace log and its assertion statements

@ Springer

128 Page 14 of 55 Empir Software Eng (2022) 27:128

timestamp value. Since this value differs in different executions, it has been marked as a
flaky value (line 8) hence only its type is asserted (line 24).

3.4 Test Selection - Prefer Focussed Tests

During each iteration of the inner loop (lines 7 to 15 in Algorithm 1 —p. 11) SMALL-AMP
generates Nyaxinputs €W tests with their corresponding assertions. In the test selection step
(lines 6 and 14) the algorithm selects those tests which kill mutants not killed by other tests.

First of all, SMALL-AMP performs a mutation testing analysis on CUT and TC and cre-
ates a list of live and uncovered mutants. Then SMALL-AMP selects those test methods from
U (the set of amplified test methods) which increase the mutation score, thus killing a pre-
viously live or uncovered mutant. If multiple tests are killing the same mutant, the shortest
test is chosen. If there are multiple short tests, the test with the least changes is chosen. In
the DSPOT paper, a similar heuristic is chosen, which the authors refer to as Focused Test
Cases Selecting.

4 SmALL-AmP Extras Compared to DSpPoOT

While the design of SMALL-AMP was inspired by DSPOT, the lack of explicit type informa-
tion forced us to make major changes but also permitted us to make improvements. This
section describes additional and diverging aspects of SMALL-AMP compared to DSPOT.

4.1 Dynamic Profiling to Collect Type Information

At the very beginning of the main algorithm (Algorithm 1 line 2), dynamic type profiling
is done only once by executing the original test methods and observing the actual type
information of variables.

In dynamically typed languages like Pharo, type annotations are not provided in the
source code. So, performing static analysis which depend on types are challenging. In
the context of SMALL-AMP, the most important step that relies on static code analysis is
input amplification. The other steps are either based on dynamic analysis like assertion
amplification, or depend on a third-party library such as selection based on mutation-testing.

In input-amplification, we can group operators into two classes as:

1. Type sensitive operators. These operators heavily depend on the type information and
without type information they are ineffective or impossible. An important type sensitive
input amplifier in SMALL-AMP is method call addition. The types of variables defined
in a test method must be inferred when adding a valid method call. In addition, it needs
the type information of parameters in the newly called method.

2. Type insensitive operators. These are all operators that are still applicable without the
type information. An example is the operators amplifying literals. These operators are
easy to adapt to a dynamic language because literals are distinguishable from a token
representation of the source code.

To obtain accurate type information we rely on the presence of manually written tests,
which should be representative for the normal behaviour of the program under test. We
exploit profiling tools (commonly available in modern program environments) to extract
accurate type information from the variables present in the program. The profiler is con-
figured to attach hooks to the relevant elements in the code. When these important code

@ Springer

Empir Software Eng (2022) 27:128 Page 15 of 55 128

elements are executed, the hooks are triggered, the profiler reads the information from the
program state and logs it.
In SMALL-AMP, we rely on two distinct profilers:

— A Method-proxy profiler, which collects the type of parameters in Class-Under-Test
methods.
— A Metalink based profiler which collects the type of variables in the test methods

To apply test amplification to other dynamically typed languages one needs compara-
ble profiling technology. Some languages provide reflexive facilities that can be exploited.
Python metaclasses for example allow one to transparently hook into the code proxy objects
similar to the method-proxies adopted in SMALL-AMP. If such reflexive facilities are not
available, one can resort to the debugger APIs to inspect values of variables at run-time.

Profiling by Method-Proxies For gathering the type of parameters in methods, SMALL-AMP
uses method proxies (Ducasse 1999; Peck et al. 2015). Proxies are methods wrapping the
methods in the class under test and trigger instead of the original methods. They first log
the arguments and then pass the control to the original method (Listing 12).

The main drawback of the Method-proxy profiler is that when a method is not covered by
the test class, it will not be profiled. SMALL-AMP reports the list of such uncovered methods
as one of its outputs. Using this report, a developer can decide to add new tests for uncovered
methods, make them private (using an adequate protocol / method tag), or remove them.

Profiling by Metalinks Pharo provides Metalinks as a fine-grained behavioral reflection
solution (Denker et al. 2007; Costiou et al. 2020). For collecting the type of variables in the
test method, SMALL-AMP uses Metalinks.

A metalink contains an action to perform which is defined by providing a meta-object, a
selector, and also a control. Metalinks can be installed on one or more nodes in the abstract
syntax tree. Listing 13 shows how metalink is defined and installed on all variable nodes in
the test method.

Line 1 to 5 shows how Metalink is initialized. It says that after execution the AST node
containing this link, the method 1ogNode : context :object : will be called with the
following arguments:

— node: The static representation of the AST node. It is used to get information such as
name and the position in the code.

— context: The context of execution including dynamic values of the variables and
stack. It is used to access to the values of temporary variables.

— object: The state of the object on which the metalink is installed (in this case the test
class). It is used to access to the values of instance variables.

In lines 7 to 10, all variable nodes in the test method are selected and then the link is
installed on them. After installing the metalinks, the test method is executed. When the
execution passes each variable node, the metalink is triggered and the logger method is
called. The logger method extracts the type information from the context, logs them and

1 ProfilingProxy >> run: aSelector with: anArray in: aReceiver
2 self logCalled: aSelector withArguments: anArray inType: aReceiver.

3 aReceiver withArgs: anArray executeMethod: method.

Listing 12 Wrapper method to log the types of the parameters

@ Springer

128 Page 16 of 55 Empir Software Eng (2022) 27:128

6
1 link := Met'aLmk new 7 nodes := testMethod ast allChildren
2 metaObject: self; 8 select: #isVariable.
3 control: #after; 9 nodes do: [:node |
4 selector: #'logNode:context:object:’; 10 node link: link]

arguments: #(node context object).

o

Listing 13 Defining a metalink to log the variable node type after execution

returns. Then, the execution on the test method continues until the end or another metalink
is triggered.

How the Collected Data is Used The collected data from each profiler is stored as a dic-
tionary object mapping the identifier of the profiled data to its type and a list of sample
values (only for primitive types). In SMALL-AMP, there are two dictionaries, for the type of
method parameters and the type of variable nodes. During the input amplification, when
type information is needed, the corresponding dictionary is consulted.

4.2 Test Input Reduction

The input amplification step quickly produces a large number of new test inputs with the
inner loop of Algorithm 1 —p. 11 —lines 7 to 15. For instance, if the number of inputs in the
first iteration is |v|, this number in the second iteration grows to |v| x |v|, and in iteration i
reaches |v|’. We refer to this problem as test-input explosion. Since the number of test inputs
grows exponentially, either the number of transformations (Njserqrion) needs to be chosen
as small values for being feasible to try all generated test input, or we need to reduce the
number of inputs by using a heuristic to select a limited number of them.

SMALL-AMP uses a random selection heuristic which maximises diversity in order to
select a maximum number (Nmaxinputs) Of test inputs. This selection is different from
selection by mutation score (Section 3.4); we name it reduction.

SMALL-AMP reduction considers two techniques:

— a competitive selection. a portion of test inputs (by default half of Npaxinputs) are
selected completely randomly from the output of all input amplifiers.

— abalanced selection in the remaining portion, SMALL-AMP assures that all input ampli-
fiers are contributed by selecting from their outputs regarding an assigned weight.
In SMALL-AMP, all input amplifiers are assigned a weight (it is 1 by default for all
amplifiers). This maintains a diversity in the selected test inputs.

Why Diversity is Important? Each input-amplifier algorithm performs transformations
based on different considerations. As a result, the number of generated tests is different for
input amplifiers. If the test inputs are selected purely random, the result will be dominated
by generated tests from amplifiers generating more outputs. Therefore, we need to have a
balance between the outputs from each amplifier.

As an example, we compare the number of new test inputs from a statement-removal
amplifier and a statement-addition amplifier. The former has a O (S) complexity where S is
the number of statements in the test method. It means that if the number of lines in the test
is increased, the number of new test inputs generated by this input-amplifier shows a linear
increase. However, the latter has a O (S * M) complexity where M is the number of methods
in the class under test. It means that the increase in the outputs depends on not only the
numbers of statements in the test, but also the number of methods in the class-under-test.

@ Springer

Empir Software Eng (2022) 27:128 Page 17 of 55 128

Now, if we select a number of generated test methods randomly, the outputs from the latter
operator is more likely to be selected; so the result will be dominated by the result from the
second input-amplifier.

4.3 Improving Readability Via Post-Processing

In order to make the generated tests more readable, SMALL-AMP adds a few steps after
finishing the main loop of the algorithm (line 17 in Algorithm 1 — p. 11). These steps do
not have any effect on the mutation score of the amplified test suite; they only make the test
cases more readable for SMALL-AMP users.

Assertion Reduction As described in Section 3.3, SMALL-AMP generates all possible asser-
tions for all observation points. Consequently, the generated test methods easily include
hundreds of new assertions most of which appear redundant. The assertion reducer is a
post-processing step that discards all assertions that do not affect the mutation score.

Each amplified test method encompasses the identifier of all newly killed mutants.
SMALL-AMP surrounds all assertion statements by exception handling blocks to catch
exceptions, especially AssertionFailure raised from the assertion statements. Then,
the mutation testing framework is run using the newly killed mutants only. When an
AssertionFailure is caught, the identifier of the assertion is logged as impor-
tant. Finally, SMALL-AMP keeps only important assertions and remove all other assertion
statements.

In some cases, an assertion may call an impure accessor methods, i.e. an accessor method
that alters the internal state of the object. When such assertions are removed, some of the
next assertions may fail. SMALL-AMP runs each test method after removing unnecessary
assertions, to confirm that they remain green and the mutants are still killed by the test. If
the confirmation failed, the assertion reduction is not successful and all removed assertions
are reinserted.

Comply with Coding Conventions Before processing a test method, SMALL-AMP breaks
complex statements (chains of method invocations and cascades) into an explicit sequence
of message sends to permit observing state changes (see Listing 10 — p. 14). This is nec-
essary to observe state changes during assertion amplification. In this post-process step,
SMALL-AMP cleans up all unused temporary variables, and chooses a better name for the
remaining variables based on the type of the variable. If possible, it reconstructs message
chains and cascades to make the source code more readable and conform to Pharo coding
conventions.

5 Evaluation

To evaluate SMALL-AMP, we replicated the experimental protocol introduced for DSPOT
(Danglot et al. 2019b). We adopted a qualitative experiment by sending pull-requests in
GitHub for evaluating whether the generated tests are relevant to the developers or not
(RQ1). Next, we use a quantitative experiment to evaluate the effectiveness of SMALL-AMP
(RQ2, RQ3 and RQ4). The order of RQ1 to RQ4 is exactly the same order in Danglot et al.
(2019b) to facilitate the comparing and it does not reflect the importance of the research
questions. In RQS5, we make a detailed comparison of our results versus the ones in the orig-
inal experiment. Finally, in RQ6, we report the time cost of the running SMALL-AMP, with

@ Springer

128 Page 18 of 55 Empir Software Eng (2022) 27:128

special attention to the performance penalty induced by the additional steps (profiling and
oracle reduction).

RQI

RQ2

RQ3

RQ4

RQ5

RQ6

Pull Requests. Would developers be ready to permanently accept amplified test
cases into the test repository? We create pull-request on mature and active open-
source projects in the Pharo ecosystem. We propose the improvement as a pull
request on GitHub, comprising improvements on an existing test (typically due to
assertion amplification) or new tests (typically the result of input plus assertion
amplification). We interpret the statements where extra mutants are killed to provide
a manual motivation on why this pull request is an improvement. The main contrib-
utors then review, discuss and decide to merge, reject or ignore the pull request. The
ratio of accepted pull requests gives an indication of whether developers would per-
manently accept amplified test cases into the test repository. More importantly, the
discussions raised during the review of the pull request provides qualitative evidence
on the perceived value of the amplified tests.

Focus. To what extent are improved test methods considered as focused? We assess
whether the amplified tests don’t overwhelm developers, by assessing how many
extra mutants the amplified tests kill. Ideally, the amplified test method kills only a
few extra mutants as then we consider the test focussed (cfr. Section 3.4 — p. 16).
We present and discuss the proportion of focused tests out of all proposed amplified
tests. An amplified test case is considered focus if, compared to the original, at least
50% of the newly killed mutants are located in a single method.

Mutation Coverage. To what extent do improved test classes kill more mutants than
developer-written test classes? We assess whether the amplified tests cover corner
cases by using a proxy — the improvement in mutation score via the mutation testing
tool MUTALK (Wilkinson et al. 2009). We first run MUTALK on the original class under
test (CUT) as tested by the test class (TC) to compute the original mutation score.
We distinguish between strong tests and weaker tests, by splitting the set of test
classes in half after sorting according to the mutation score. Next, we amplify the
test class and compute the new mutation score. We report the relative improvement
(in percentage).

Amplification Steps. What is the contribution of input amplification and assertion
amplification (the main steps in the test amplification algorithm) to the effectiveness
of the generated tests? Here as well we use mutation score as a proxy for the added
value of both the input and assertion amplification step and here as well we dis-
tinguish between strong and weak test classes. Therefore, we compare the relative
improvement (in percentage) of assertion amplification against the relative improve-
ment of input and assertion amplification combined. We report separately which
amplification operators have the most impact, paying special attention to the ones
which are sensitive to type information.

Comparison. How does SMALL-AMP compare against DSPOT? To analyse the dif-
ferences in result between SMALL-AMP and DSPOT, we compare the qualitative and
quantitative results reported in the DSPOT paper against the results we obtained for
RQI to RQ4.

Time Costs. What is the time cost of running SMALL-AMP, including its steps? To
study the applicability of SMALL-AMP, we analyse the time cost of all runs in the
quantitative analysis. We compare the relative time cost of each step, paying special
attention to the extra overhead of profiling and oracle reduction.

@ Springer

Empir Software Eng (2022) 27:128 Page 19 of 55 128

5.1 Dataset and Metrics

Selecting a Dataset Firstly, we collected some candidate projects under test from different
sources: (1) We looked at the projects used in a recent paper focusing on testing in Pharo
(Delplanque et al. 2019). (2) We looked at the projects introduced in “Innovation Technol-
ogy Awards” section of ESUG conference from year 2014. (3) We used GitHub API to find
the Pharo projects hosted in GitHub with more than 10 forks and 20 stars.

Then we applied a set of inclusion and exclusion criteria. Our projects needs to be hosted
in GitHub and written in Pharo. They should include a test suite written in sUnit, and can run
in Pharo 8 (stable version). For not being overwhelmed with resolving dependencies, they
need to support installation with Metacello and not depend on system level packages
like databases or a special installation service. We discarded all libraries that are part of the
Pharo system such as collections, or compiler.

Based on the mentioned criteria, we selected randomly 20 projects. Then, we rejected
projects having less than 4 green test classes with known class under test and mutation
coverage less than 100.

Similar to the experimental protocol in DSPOT (Danglot et al. 2019b), we select ran-
domly 4 test classes, 2 high mutation coverage and 2 low, for each project. If a project lacks
at least 2 test classes having high (or low) mutation score, we select from lower (higher)
covered classes instead. As result, we have 52 test classes, 27 of them considered strong
(high mutation score) and 25 considered weaker (lower mutation score).

Table 2 shows the descriptive statistics of the selected projects with a short description,
area of usage, number of test classes and test methods and their version based on git commit
id, and selected test classes (a superscript # is used to indicate a test class with high mutation
coverage, and ! is used to indicate low mutation coverage).

Detecting the Class Under Test SMALL-AMP needs a test class and its class-under-test as
inputs. Finding a mapping between a test and a class can be challenging. As the default
mapping heuristic, we rely on the pattern used by Pharo IDE to detect a test method for a
class. The Pharo code browser finds a unit test for a class as follows: it adds the postfix
"Test" to the name of the class. If there is such class loaded in the system that is a subclass
of TestCase it is considered as the unit test class. If this heuristic is not followed in a
project, one can explicitly define the class-under-test by overriding a hook method in test
classes.

Metrics We adopt the same metrics used in the experimental protocol in Danglot et al.
(2019b):

— Al killed mutants (#Mutants.killed): The absolute number of mutants killed by a
test class in a given class under test.

— Mutation score (%M .Score): The ratio (in percentage) of killed mutants over the
number of all mutants injected in the class under test.

#Mutants .killed

#Mutants.All

— Newly killed mutants (#Mutants.killed, .,): The number of all new mutants that are

killed in an amplified version of the test class.

YoM .Score = 100 x

#Mutants.killedye,, = #Mutants.killedappiifiea — #Mutants.killedyyiginai

@ Springer

(2022) 27:128

Empir Software Eng

128 Page 20 of 55

JSALRWYOUSgZdd ‘ pSALpIenD3uIsIedZdd

‘ pSoLueAnSIRHNgdd ¢ JSOLIPWIWEINGIM 19s1ed umop-doy aouewiogred-ysiy v GeS Ly BICHTO] zlosredined
psaLs1adepy10)eSIABNdO * psaLivalorddo
¢ ASALISZI[ELIDS N O ¢ ASALIUTENSUOD SR LIdO uuofye[d Surjopoy 8C1 61 q$899Jq yuoduado
ASLIORIATAN uS1so([elRIRIA Jo doj uo syaSpim
¢ JSRLISITPAISON'TAIN ¢ psepusuodwo)uoneurSed IAN pring pue opiseas 03 3d3foxd g
‘IsaLuonngroyNmSRUed TAN US1sa(J [BLIdIBIA S,9[3008 oy spulg 8y LL PrIdISYy AN TUSISARLIIEI
AsersieumsIy 00 ‘sl feweIn)sonbay 100
¢ PSALIOEN[EAFAIONQSNOWTUOUY[SUISTOD
*SLIBWWEINLWSYISTOD uonejuswoldury TOYdeID yeews v 601 6 8BOLGIE TOydern
SR W[ATESSANIXL19S(1PURSS * JSALPQUHSA
¢ JSALPUBIWOD[QUURY)IONRASA “ASRLISNSA proosi(1oj 1oddeim gy uy 439 5% 196°9%1 ISPI0ISI(T
PSRLISpEJuUOs [oweLElR(‘ ISALI0103RedA L ower e
¢ ASALIGII A UOS [oWELTEVe (] * ASRLIopeaAs JeWELEIe(] SISATRUE BIEP JOJ SQINIONI]S BIRP IB[NqR], L6V 9 79TTTaL owelfeieq
psapuoneuiquio)Krosindwo)rg
‘PSALSIOSULIY “ PSALINOUOYS[H JSAULISZISOYIORXHINOAE TG oIeyd JoJ IOMIWEI) 29 dInonnseljul) il 9 976969 oorg
Juowradxa oy ur (a3ed qnuin uo paseq) spoyiowt S3SSE[O PI
SOSSB[D IS, uonduosaq 18904 1894 JIUIWOD 100l01g

SASSE[D 159) Pajo[as Ay pue s303lo1d oreyd ¢1 Jo pasoduwo)) 1asee(q ay3 1oy sonsnels 2anduosaq g ajqeL

pringer

A's

Page 21 of 55 128

(2022) 27:128

Empir Software Eng

JSALWEANSII MIUS[BAIUZ * JSALUITSIIRISUZ

1090301d Sunyromiou JL.LH

¢ ASALYIEWYOUSHITLSSINUZ ‘ psaLAsequz Ay Yiim Tedp 03 sjueuodwio)) JLLH 76T 1T 1L0P099 ourz
PSALPUASTL ‘ psaLdeNuonnqLIsIqLL suonezifensiA [njSuruedw
*ASALUONOVOPIHTIL ,Is9LuonoysapoNasderoppuedxg 1L Suneard Apueige 1oy ourisug SL 11 AR adoosaray,
JSRLIS[PUBHIOIH YA © JSRLSPAUEDUIX VA suoneordde qom pajeon
¢ JSALABI00DVAL ¢ JSALIOIBISUSDAIS VM -sydos Surdo[oAsp 10J Iomowel] 616 GS 67A8€0€ opIseas
JSAULIRIOPURYSUIPY S * JSALSEAUBDRqESTRIQSY
*ISALIOPIMGSSLI D TINNSY *ISALI0IBIdUID[GRTSY ouISuy UOTILZI[ENSIA 4! 81 $¥95A69 glesseoy
psaLuonnqusiqrenusuodxgNd ‘ pSRLIUodXLING
¢ JSALIONRISUSDI[NOURGING *,3SAULI0JEISUSD [BIWOUI N oreyd yim Sunndwo) oyynudrog 509 LS 2J9PS0T yreNA[od
pserereduwa] [eo0 T Tud
‘ psax A1oysodoyyegewpasegA1010anqT4d
‘ psaLpuewo)asew]Ado)Tud ¢, ISALpUBWWONINOqY TU] sagew oxeyd 10j 1oSeURA 91C 8¢ 8¥L901) Joyoune[-oxeyd
Juowrradxa oy ur (aSed qny1o uo paseyq) spoyiowt S3SSE[O PI
SOSSB[D 1S9, uondroseg 18904 159N JIUIWI0D 100l01g
(ponunuoo) g a|qe

pringer

A's

128 Page 22 of 55 Empir Software Eng (2022) 27:128

Table 3 Pull requests submitted on GitHub

Project Status Pull request url

PolyMath Merged https://github.com/PolyMathOrg/PolyMath/pull/178
Pharo-Launcher Merged https://github.com/pharo-project/pharo-launcher/pull/500
DataFrame Merged https://github.com/PolyMathOrg/DataFrame/pull/132
Bloc Merged https://github.com/feenkcom/Bloc/pull/7

GraphQL Merged https://github.com/OBJECTSEMANTICS/GraphQL/pull/12
Zinc Merged https://github.com/svenvc/zine/pull/58

DiscordSt Merged https://github.com/JurajKubelka/DiscordSt/pull/75
MaterialDesignLite Merged https://github.com/DuneSt/MaterialDesignLite/pull/308
PetitParser2 Open https://github.com/kursjan/petitparser2/pull/64
OpenPonk Open https://github.com/OpenPonk/openponk/pull/35
Telescope Open https://github.com/TelescopeSt/Telescope/pull/162

— Increase Kkilled (%1nc.killed): The ratio (in percentage) of all newly killed mutants
over the number of all killed mutants.
#Mutants.killed, ey

#Mutants.killed,iginai

YlInc.killed = 100 x

5.2 RQ1 — Pull Requests

In this experiment, we choose an amplified test method for each project and send a
pull-request in GitHub. Before the experiment, we sent a pilot pull-request to learn how
developers deal with external contributions. Firstly, we explain the pilot pull-request and
then all pull-requests are described one by one. Table 3 demonstrates the status as well as
the url of each pull-request per project.

5.2.1 Pull-Requests Preparation

Each pull-request contains a single amplified test method*. In order to attract the developers’
interest, we try to select a test method testing an important class/method. We select the
class under test by scanning their name and relating the names to the context of the project.
For example, we know the project Zinc is a HTTP component, so the class ZnRequest
should be a core class. We run the tool on the selected test class, and then scan the generated
test methods to select one of them. In selecting an amplified test method, we still consider
the vocabularies in the name of the original test method. We also prioritize the tests with
more mutants killed.

In addition, we need to explain why a test is valuable in each pull-request. Since some
developers may not be familiar with the concept of mutation testing, we need to understand
the test in advance and explain it in simpler words.

We inspect at the selected test method and try to understand the effect of the killed
mutant and come up with an easy to understand explanation. Examples of explanations
are: increasing branch coverage (PolyMath), raising an exception (pharo-project,

“Exception for the project MaterialDesignLite where we 2 very similar test methods in a single pull
request

@ Springer

https://github.com/PolyMathOrg/PolyMath/pull/178
https://github.com/pharo-project/pharo-launcher/pull/500
https://github.com/PolyMathOrg/DataFrame/pull/132
https://github.com/feenkcom/Bloc/pull/7
https://github.com/OBJECTSEMANTICS/GraphQL/pull/12
https://github.com/svenvc/zinc/pull/58
https://github.com/JurajKubelka/DiscordSt/pull/75
https://github.com/DuneSt/MaterialDesignLite/pull/308
https://github.com/kursjan/petitparser2/pull/64
https://github.com/OpenPonk/openponk/pull/35
https://github.com/TelescopeSt/Telescope/pull/162

Empir Software Eng (2022) 27:128 Page 23 of 55 128

DataFrame), covering new state revealing methods (Bloc, Zinc), reducing technical
debt (GraphQL).

After selecting an amplified test method, we perform small corrections on the generated
code, as a normal Pharo developer would do when see an auto-generated code. These cor-
rections include choosing more meaningful names for the test method, variables and string
constants, or deleting the superfluous lines, and adding comments for small hints.

All preparation steps are performed by the first author and are reviewed by the second
and third authors. In the time of experiment, the familiarity of the first author about the
projects was only studying parts of provided readme description in GitHub. So, he was
totally unfamiliar with the projects, he had not contributed to any of the projects, and had
never reviewed their code. In fact this shows although there might be more interesting tests
for experts, a normal Pharo developer with limited knowledge about the projects is able to
review the output and detect some useful test methods that are merged to the projects. The
preparation of the tests was quite straightforward and normally did not take more than one
hour for each project.

5.2.2 Pilot Pull-Request

Initially, we sent a pull-request® to Seaside project containing the suggestion for adding
a set of new lines into an existing test method. The main goal of this pull-request was to
learn more about how developers deal with pull-requests from strangers.

We consider the fact that Seaside project is a framework for web application devel-
opment and we scanned the name of classes and selected WARequestTest because
we expected this test class is related to a core class-under-test which interacts with Http
requests. Then, we amplified the test class and selected the test method with the most
mutants killed.

The selected new test method was able to kill 6 new mutants and was the result of a coop-
eration between assertion amplification (Section 3.2) and input amplification (Section 3.3).
We merged the parts of amplified test into the original test method (#testPostFields).
The test is shown in Fig. 1. Lines 5 to 10 are produced by assertion amplification on the
original test method (#testPostFields). Line 15 is added by the method-call-adder
input-amplifier.

We wrote a description for the pull-request trying to explain why this test is useful. We
also expressed that the test method is the output of a tool, because it is important to inform
developers in advance that they are participating in an experiment.

After a few days the test was merged by one of the project’s developers. Moreover, the
developer left a valuable comment containing the following points:

— The suggestions do not fit this test method: The developer said “I expected the test-
Postfields unit test method to focus on testing the postFields”. We agree with his remark.
If the suggested changes do not have a semantic relation to the original test method,
it should be moved to another test or a new one. We considered this advice in the
subsequent pull-requests.

— Usefulness of the result to refactoring the tests: The developer also stated “the result
of the test amplification makes me evaluate the existing unit tests and refactor them to
improve the test coverage and test factorization”. This shows that even if the immediate
results of test amplification are not tidy enough, they still help refactor existing tests.

Shttps://github.com/SeasideSt/Seaside/pull/1215

@ Springer

https://github.com/SeasideSt/Seaside/pull/1215

128 Page 24 of 55 Empir Software Eng (2022) 27:128

testPostFields

| request headers |

request := WARequest method: 'POST' uri: '/foo?bar=1'.

self
deny: request isXmlHttpRequest;
assert: request headers class equals: WAHeaderFields;
assert: request remoteAddress isNil;
assert: request isPost;

+ + + + o+ +

assert: request sslSessionId isNil.
headers := Dictionary new.
headers at: 'content-type' put: WAMimeType formUrlencoded greaseString.
request setHeaders: headers.
request setBody: 'baz=2&bar=3'.
+ self should: [request bodyDecoded 1 raise: WAIllegalStateException.
request setPostFields: (WARequestFields new at: 'baz' put: '2'; at: 'bar'
put: '3'; yourself).

Fig. 1 Improvements on an existing test method submitted to SEASIDE

5.2.3 Pull-Request Details
In the following parts we describe the details on the pull-requests on each project.

PolyMath We sent a pull-request® to this project containing the suggestion for adding a
new test method in the test class PMVectorTest. The suggested test method is shown in
Fig. 2.

This test method is testing the call of the method #householder on two different
vectors. Before this test, the method #householder was not covered in this test class.

The method-call-adder input amplifier adds calls to an existing method in the public
interface of a class to the test to force the object under test in a new state. We merged two of
them in a new test method that execute two different branches in the test method (based on
the condition x < 0). The former vector (line 75 in Fig. 2) forces the ifTrue branch and
the latter vector (line 80 in Fig. 2) forces ifFalse branch. Note that the comment text (line
75) is added manually to increase the readability of the test.

The original test method included two assertions to confirm the type of the returned value
of the method (self assert: w class equals: Array). The developers asked
us to omit these assertion statements. We changed the pull request accordingly and it was
merged immediately.

Pharo-Launcher We sent a pull-request’ to this project containing the suggestion for
adding a new test method in the test class PhLImportImageCommandTest. The
suggested test method is shown in Fig. 3.

This test is produced from the original test method of testCanImportAnImage
which verifies an image can be imported using a valid filename. SMALL-AMP applies a lit-
eral mutation on the file name (*foo.image’ changed to ‘fo.image’) that results

Shttps://github.com/PolyMathOrg/PolyMath/pull/178
7https://github.com/pharo- project/pharo-launcher/pull/5S00

@ Springer

https://github.com/PolyMathOrg/PolyMath/pull/178
https://github.com/pharo-project/pharo-launcher/pull/500

Empir Software Eng (2022) 27:128 Page 25 of 55 128

+ PMVectorTest >> testHouseholder [

+ | uw |

+ u := #(-1 @ 1) asPMVector. "'x <= @' when x = -1"

+ w := u householder.

+ self

+ assert: (w at: 1) equals: 1.7071067811865475;

+ assert: (w at: 2) asArray equals: #(1.0 -0.0 -0.4142135623730951).
+ u := #(1.00001 2.00007) asPMVector. "'x <= @ when x = 1.00001"
+ w := u householder.

.

o

.

o

assert: (w at: 1) equals: 0.5527953485259909;
assert: (w at: 2) asArray equals: #(1.0 -1.6180158992689828).
1

Fig.2 A new test method submitted to POLYMATH

an invalid filename and consequently raising a FileDoesNotExistException error.
While preparing the test for the pull-request, we modified the name of the test method and
the file to be more meaningfull.

The pull-request was merged in the same day with this comment: “Indeed, the test you
are adding has a value. Good job SmallAmp”.

DataFrame We sent a pull-request® to this project containing the suggestion for adding a
new test method in the test class DataFrameTest. The suggested test method is shown
in Fig. 4.

The variable df is an instance variable that has been initialized in the #setUp method.
It includes a tabular data mixed from numbers and texts. The initial amplified test method
was generated by adding the method #range as the first statement in one of the original
test methods. We recognized the remaining statements as superfluous lines and removed all
of them. We also added a comment including the exception description.

This test method makes it explicit that calling the method #range on a DataFrame
object containing non-numerical columns throws an exception. With this new test it
becomes an explicit part of the contract for DataFrame.

The pull-request was merged after a few weeks. A developer of the project commented:
“Small-amp seems to be a very valuable tool!”

Bloc We sent a pull-request’ to this project containing the suggestion for adding a new
assertion in an existing test method in the test class BlKeyboardProcessorTest. The
suggested test method is shown in Fig. 5.

By calling the state revealing method #keystrokesAllowed, the assertion verifies
the correctness of the object state after an #processKeyDown: event. This test is the
result of combining assertion-amplification with oracle-reduction. Normally, the assertions-
amplification step generates lots of assertions, and the oracle-reduction module removes all
assertion statements that do not kill any mutant. So, the test code did not need any special
preparation and we only need to provide a comment to explain the test method.

8hitps://github.com/PolyMathOrg/DataFrame/pull/132
9https://github.com/feenkcom/Bloc/pull/7

@ Springer

https://github.com/PolyMathOrg/DataFrame/pull/132
https://github.com/feenkcom/Bloc/pull/7

128 Page 26 of 55 Empir Software Eng (2022) 27:128

PhLImportImageCommandTest >> testImportNonExistingImage [
| command |
command := PhLImportImageCommand new.

presenter := presenter

-
+

%

+ command context: presenter.

-

+ requestAnswer: presenter fileSystem / 'tmp' /
.

does_not_exists.image'.

+

self should: [command execute] raise: FileDoesNotExistException
o

+81]

Fig.3 A new test method sent in a pull-request to the project Pharo-Launcher

The pull-request was also merged after a few weeks with a positive comment.

GraphQL We sent a pull-request!'? to this project containing the suggestion for adding a
new test method in the test class GQLSSchemaNodeTest. The suggested test method is
shown in Fig. 6.

This test method verifies the return value of directives in an schema
object. The returned value is generated in the method GQLSSchemaNode >>
initializeDefaultDirectives and contains technical debt. This test method
guards against future evolutions which may break assumptions made by clients. We selected
a meaningful name for the test and wrote a comment text. We also added back some of the
assertions removed by oracle-reduction step. The pull-request was merged after a few days.

Zinc We sent a pull-request!! to this project containing the suggestion for adding a new test
method in the test class ZnRequestTest. The suggested test method is shown in Fig. 7.

This test method calls the method #setAcceptEncodingGzip on an request
object. Then calls another method #acceptsEncodingGzip to verify the change. Both
of these methods were not covered in this test class before this test method.

This method is built by cooperating three module of SMALL-AMP. First, method-call-
adder input amplifier adds a new method call. Then assertion amplification inserts a set of
new assertions after the added method call. And finally, after the main amplification loop
is finished, the oracle-reduction step rejects all superfluous assertion statements. This test
method did not need much preparation and we only selected a meaningful name for it. The
pull-request was merged in the same day.

DiscordSt We sent a pull-request!? to this project containing the suggestion for adding a
new test method in the test class DSEmbedImageTest. The suggested test method is
shown in Fig. 8.

The method covers the method #extent which was not covered in the test class before.
This test method did not need much preparation and we only selected a meaningful name
for it. The pull-request was merged after a few days.

1Ohttps://github.com/OBJECTSEMANTICS/GraphQL/pull/12
https://github.com/svenvc/zinc/pull/58
Zhttps://github.com/JurajKubelka/DiscordSt/pull/75

@ Springer

https://github.com/OBJECTSEMANTICS/GraphQL/pull/12
https://github.com/svenvc/zinc/pull/58
https://github.com/JurajKubelka/DiscordSt/pull/75

Empir Software Eng (2022) 27:128 Page 27 of 55 128

+ DataFrameTest >> testRangeError [
+ self should: [df range] raise: MessageNotUnderstood "Instance of
Character did not understand #Barcelona"

|

Fig.4 A new test method sent in a pull-request to the project DataFrame

BlKeyboardProcessorTest >> testProcessKeyDown [
| eventA |

eventA := BlKeyDownEvent new.
eventA key: BlKeyboardKey a.

processor processKeyDown: eventA.
+ self assert: processor keystrokesAllowed.
self assert: (processor buffer hasEvent: BlKeyboardKey a)
]

Fig.5 A new assertion suggested in a pull-request to the project Bloc

values: [Int !]

+ GQLSSchemaNodeTest >> testDirectives [

+ schema := self

+ parseSchema:

+ ‘type A {

+ id: InternalCount
+ isB: BooleanType
+ size: Int

+ idA: ID_A

i

5

params (name: StringName, prom:
FloatingPoint, key: String): [Int]
e

self assert: schema directives class equals: Array.
self assert: schema directives size equals: 2.
self
assert: (schema directives at: 1) class
equals: GQLSDirectiveNode.

+ o+ + o+ + o+ o+ o+

self assert: (schema directives at: 1) name equals: 'include'.

Fig.6 A new test method suggested in a pull-request to the project GraphQL

Fltests:

+ testAcceptsEncodingGzip

| request |

request := ZnRequest new.
request setAcceptEncodingGzip.

+ o+ o+ o+

self assert: request acceptsEncodingGzip @

Fig.7 A new test method suggested in a pull-request to the project Zinc

@ Springer

128 Page 28 of 55 Empir Software Eng (2022) 27:128

+ tests

+ testExtent

+ object := self newObjectToTest.

object width: 41.

object height: 42.

self assert: object extent equals: 41 @ 42

+ + o+

Fig.8 A new test method suggested in a pull-request to the project DiscordSt

MaterialDesignLite We sent a pull-request'? to this project containing the suggestion for
adding two new test methods in the test class MDLCalendarTest. The suggested test
methods are shown in Fig. 9.

Both of test methods are similar and are created by adding a new method call to
the test input. The tests are created for the Calendar widget and verify correctness of
#selectPreviousYears and #selectNextYears methods. In these test meth-
ods, the oracle-reduction step removed most of the assertions and it only preserved
the first assertion killing the mutant: self assert: calendar yearsInterval
fourth equals: 2006. We replaced the assertions with more human readable asser-
tions (asserting first and last of the interval). The pull-request was merged the day
after.

PetitParser2 We sent a pull-request'* to this project containing the suggestion for adding
a new test method in the test class PP2NoopVisitorTest. The suggested test method is
shown in Fig. 10.

The test method tests the value of currentContext in result object. This test
method resulted from assertion amplification combined with oracle-reduction. The test had
two assertions: self deny: visitor isRoot and self assert: visitor
currentContext class equals: PP2NoopContext. We added back some of
removed assertions relating to currentContext and also removed the self deny:
visitor isRoot to make the test more focused. The pull-request is not merged up to
the date of writing (July 5, 2022).

OpenPonk We sent a pull-request!d to this project containing the suggestion for adding
a set of new lines in an existing test method in the test class OPDiagramTest. The
suggested test method is shown in Fig. 11.

The original test method is presented in Listing 14.

SMALL-AMP has broken the statement at line 4 in Listing 14 (the result is visible in lines
104 and 108 in Fig. 11) and then added a series of assertions. Since this test is dedicated
to test model, we kept all assertions reflecting the state of model and removed other
assertions. So, the assertions in lines 104 to 107 verify the state of a freshly initialized
OPDiagram object (where model is nil), and the assertions in lines 109 to 112 verify the
public API through the accessor methods. The pull-request is not merged up to the date of
writing this paper.

Bhttps://github.com/DuneSt/Material DesignLite/pull/308
https://github.com/kursjan/petitparser2
Bhttps://github.com/OpenPonk/openponk

@ Springer

https://github.com/DuneSt/MaterialDesignLite/pull/308
https://github.com/kursjan/petitparser2
https://github.com/OpenPonk/openponk

Empir Software Eng

(2022) 27:128

Page 29 of 55 128

e
o
o
o
o
+]
o
p
e
o
o
o

1

MDLCalendarTest >> testSelectNextYears [

calendar selectNextYears.

calendar selectPreviousYears.
self assert: calendar yearsInterval first equals: 2003.

calendar currentDate: (Date year: 2016 month: 4 day: 10).

self assert: calendar yearsInterval first equals: 2021.
self assert: calendar yearsInterval last equals: 2029

MDLCalendarTest >> testSelectPreviousYears [
calendar currentDate: (Date year: 2016 month: 4 day: 10).

self assert: calendar yearsInterval last equals: 2011

Fig. 9 Test methods sent in a pull-request to the project MaterialDesignLite

o
5
"
o
5
o
5
5

1

self assert:
self assert:
self assert:

self assert:

PP2NoopVisitorTest >> testCurrentContext [
parser := $a asPParser.
result := visitor visit: parser

result currentContext class equals: PP2NoopContext.

result currentContext properties isNil.

result currentContext node isNil.

result currentContext propertiesCopy isNil

Fig. 10 A test method sent in a pull-request to the project PetitParser2

OPDiagramTest >> testModel [
| model project |

model

self
self
self
view
self
self
self
self
self

+ o+ 4+ + o+ 4+ o+ 4+

:= OPTestContainerModel new.

assert:
assert:
assert:

model:

assert:
assert:
assert:
assert:
assert:

view := OPDiagram new.

view modelType equals:
view model isNil.

view modelName equals:
model.

view modelType equals:

‘UndefinedObject"'.

'UndefinedObject'.

'OPTestContainerModel’

view model class equals: OPTestContainerModel.

view model name equals:

view modelName equals:

‘container’.
'container'.

view model equals: model

Fig. 11 Changes on an existing test method - OpenPonk

Listing 14 Original test method -

OpenPonk

L N

OPDiagramTest >> testModel [
| model project |
model := OPTestContainerModel new.
view := OPDiagram new model: model.
self assert: view model equals: model

@ Springer

128 Page 30 of 55 Empir Software Eng (2022) 27:128

TLNodeCreationStrategyTest >> testCopyAsSimpleStrategy [
| aTLNodeCreationStrategy
aTLNodeCreationStrategy := strategy copyAsSimpleStrategy.
self
assert: aTLNodeCreationStrategy class
equals: TLNodeCreationStrategy.

+
+

T

+

+

T

+ self assert: aTLNodeCreationStrategy childrenStrategy isNil.

+ self assert: aTLNodeCreationStrategy compositeProperty isNil.

+ self assert: aTLNodeCreationStrategy childrenSortingStrategy isNil.
+ self assert: aTLNodeCreationStrategy compositeChildrenLayout isNil.
+ self assert: aTLNodeCreationStrategy nodeStyle isNil

i

1
Fig. 12 A test method suggested in a pull-request to the project Telescope

Telescope We sent a pull-request!© to this project containing the suggestion for adding a
new test method in the test class TLNodeCreationStrategyTest. The suggested test
method is shown in Fig. 12.

The test method verifies the state of the returned object from calling
copyAsSimpleStrategy. This method is never covered in the test class. It also contain
technical debt. The call to copyAsSimpleStrategy is added by method-call-addition
amplifier and the state of the returned value is asserted via assertion-amplification. We kept
all assertions related to the returned value, and removed all other superfluous lines to make
the test more readable. The pull-request is not merged up to the date of writing this paper.

Answer to RQ1: We submitted 11 pull requests through GitHub
to propose amplified test methods to developers. In 8 cases, our re-
quest was accepted by the developers and the test has been merged
to the code base. In the three remaining cases our pull request was
ignored. Moreover, we received qualitative feedback from developers
acknowledging the relevance of amplified test methods.

-

5.3 RQ2 — Focus

We use the results in Table 4 for answering the next research questions. These tables present
the result of test amplification on the all selected classes selected in our dataset. In Table 4,
the first 104 rows represent test amplification for test classes with high mutation cover-
age, while the remaining of the rows show the test classes with poor mutation coverage.
SMALL-AMP algorithm (Algorithm 1) has a stochastic nature, especially test input reduction
(Section 4.2) which heavily depends on randomness. Therefore, we ran the algorithm three
times on each test class to observe the effect of randomness on the results.

In addition, we ran the algorithm another time by disabling the profiling and the type
sensitive operator for investigating the effectiveness of type profiler (denoted by o o o).

16https://github.com/TelescopeSt/Telescope

@ Springer

https://github.com/TelescopeSt/Telescope

Page 31 of 55 128

(2022) 27:128

Empir Software Eng

$0-10°0 000 0 0 0 000 0 144 0 0 000 (¢
¥C10:0 000 0 0 0 000 0 ¥ 0 0 61
12100 000 0 0 0 000 0 ¥ 0 0 81
€C10:0 000 0 0 0 000 0 ¥ 0 0 08 L81 T ISReWYOUSgaSessINUZ L]
87°10°0 000 0 0 0 000 0 #9 0 0 coo 9]
90:20:0 000 0 0 0 000 0 ¥9 0 0 S1
90-20:0 000 0 0 0 000 0 ¥9 0 0 4!
20:20:0 000 0 0 0 000 0 9 0 0 <I'te 6LC SI Isqriooalegedifowerjereq ¢1
#1500 000 0 §C9 I Y4 r 91 4 4 coo ¢TI
11:60:0 000 0 ST9 I 00°S¢ ¥ 91 C C 8!
LS*80:0 000 0 §T9 I 00°S¢ ¥ 91 C C ol
£7:80:0 000 0 ST 1 00°sT ¥ 91 C ¢ eLcL 08 6 Is9Llopeayjuosfoweljeied 6
£0:00-0 000 0 0 0 000 0 Ll 0 0 coo 8
L0:00:0 000 0 0 0 000 0 L1 0 0 L
L0:00:0 000 0 0 0 000 0 L1 0 0 9
80:00:0 000 0 0 0 000 0 Ll 0 0 g8 09 ¥ ISQLIopeayAsHoweleIRq ©
60-00-0 000 0 2991 ! £€€e 4 9 ! I coo ¢
11:00:0 000 0 L9991 I £eee C 9 I I €
11:00:0 000 0 L991 I £e'ee C 9 I I 4
11:00:0 000 0 L991 ! £e'ee 4 9 I I 0s IS ¥ ISLIMmuosfoweljeeq |
papre papie dwe-y dwe-y paygrdwe poyrdwe [eurduo spoyjowt [eurSo

(sturzy) odAy poqry odAy poqry A[uo poqy juenuw parmy Po[[IY siueINW Spoyjow 1S9) 21008 D Spoyleu

Qwry, oseaou] 9, A[MON # OSBAIOUJ 95 A[MON # OSBAIOU] 9 A[MON # POI[I # POSNOOJ# MIN# N % O0[# ISQL# sse[D PI

(98e10A00 YSTY YIIM SISQT) "SASSL[D 159} 7§ AU} U0 dINY-1TVING Aq uoneoyriduwe 1s9) Jo Jnsaray], § 3d|qel

pringer

H's

(2022) 27:128

Empir Software Eng

128 Page 32 of 55

01910 000 0 0 0 000 0 81 0 0 oo 0Or
0r-¢r-0 ITT1 4 0 0 ITIr 4 81 C [4 6¢
12:ev:0 ITT1 [4 0 0 ITT1 [4 81 [4 [4 8¢
1910 ITT1 (4 0 0 ITT1 [4 81 [4 4 06 8¢ i4! IS9LIBWWRIDqIM LE
10-11-0 000 0 0 0 000 0 96 0 0 ©00o 9¢
0-veT §T9 9 0 0 6C'L L 96 L L ge
§6Tee §T9 9 0 0 6C'L L 96 L L 123
SI9IC §T¢9 9 0 0 6C'L L 96 L L cee OF LS IS9LIRWWRINEWAYISTOD €€
20-90-0 000 0 0 0 SEr ! £ ! ! 000 T¢
S1-:60-:0 000 0 0 0 0L'8 4 £ C [4 83
92:0:0 000 0 0 0 0L'8 [4 € C [4 0¢
1S9 Iojen[eAq
12600 000 0 0 0 0L'8 [4 €C C ¢ Lces 9§ 7¢ Andsnouwtuouya[suIsION 6C
0I+0-0 000 0 0 0 000 0 9¢ 0 0 ©oo 8¢
20:¥0:0 000 0 0 0 000 0 9¢ 0 0 LT
60:70:0 000 0 0 0 000 0 9¢ 0 0 9C
LO¥0:0 000 0 0 0 000 0 9¢ 0 0 SS9 vl 6C IsorewureInNsanboy 10D §T
91-820 000 0 0 0 000 0 ol 0 0 ©00° ¢
SE91:0 000 0 0 0 00°0 0 01 0 0 €C
010 000 0 0 0 000 0 01 0 0 (44
STor0 000 0 0 0 000 0 o1 0 0 999 <9 01 19 Asequz 1T
popie popre dwe-y dwe-y poygrdwe poygrdwe [eurSuo spoyiowt [eurSuo

(s:urry) odAy pory odAy poqy Aquo po[[y{ jueinw Pl pPo[[sjuelnw spoyjaur 189) 2100 [ND Spoyleux

QWIJ, OSBAIOU[95 A[MON # OSBAIOU] 95 A[MON # OSeaIou] 9 A[MON # PO[IIN # POsSNooJ# MON# INN % J0[# ISOL# sse[D PI

(ponunuoo) y3jqer

pringer

A's

Page 33 of 55 128

(2022) 27:128

Empir Software Eng

00-:00-0 000 0 0 0 000 0 I 0 0 0s IS¢ € ISQLASZIBLIDSIIANGO 19
§¢-clo 000 0 0 0 000 0 LI 0 0 ©00° (9
12C1-0 000 0 0 0 000 0 €LT 0 0 65
LO-TT:0 000 0 0 0 000 0 €LT 0 0 8¢
61:11:0 000 0 0 0 000 0 €L1 0 0 8¢€T8 €6¢ C 1S3 101eIURD[9qRTSY LS
0£-£0°0 000 0 001 I 00001 I I ! I ©oo 9¢
£¢:60:0 000 0 001 I 00°001 [I I I 59
¥€:60:0 000 0 001 I 00°001 I I I I 123
00-60-0 000 0 001 I 00°001 I I I I 0s €t (4 ISQLIOPIINESSBDTINNSY €6
£2:00-0 000 0 0 0 000 0 44 0 0 oo ¢¢
92-:00:0 000 0 0 0 000 0 [47 0 0 IS
LT:00:0 000 0 0 0 000 0 [4% 0 0 0S
L2:00:0 000 0 0 0 000 0 w 0 0 o6I'lL 66l 11 1sopueuodwopuoneused IAN 61
LF00-0 000 0 0 0 000 0 L 0 0 coo 8y
L¥:00:0 000 0 0 0 000 0 L 0 0 Ly
9%:00:0 000 0 0 0 000 0 L 0 0 9
9%:00-0 000 0 0 0 000 0 L 0 0 &8¢ 001 9 IsaLuonNng.eyoiMSPUBd TN S
[£:00°0 000 0 0 0 000 0 8L 0 0 ©oo yp
9€:00:0 000 0 0 0 000 0 8L 0 0 194
$€:00:0 000 0 0 0 00°0 0 8L 0 0 (47
¥€:00-:0 000 0 0 0 000 0 8L 0 0 L8¢8 88l 91 IsoLureanSIoyngedd 1
popie popre dwe-y dwe-y poygrdwe poyrdwe [eurduo spoyiow [euisuo

(stwrzy) odKy poqy odA) poqy Aquo po[iy jueinw ol POl Ssuenw spoyjour 1S9) 2I100S D Spoylowr

QW] 9SeAdU] 9, A[MON # OSBAIOU] 95 A[MON # OSBAIOU[9 A[MON # POI[IS # POSNOOJ# MIN# NN % O0[# ISAL # sse[D pI

(ponunuoo) yajqey

pringer

H's

(2022) 27:128

Empir Software Eng

128 Page 34 of 55

86:00:0 000 0 0 61 4! 8
1SQLUOTOY
8C:10:0 000 0 'L I 611 C 4! C C L999 sopoNosde[ioppuedxq L 18
#1000 000 0 0 0 00°0% 4 S ! ! ©o0o 08
92:00:0 000 0 0 0 00°0% C S I I 6L
€€:00:0 00°0C 1 0 0 0009 € S € € 8L
0€-00:0 000 0 0 0 000 0 S 4 ¢ 9¢°sS ISQLUONOVOPIHTIL LL
1£°10°0 000 0 ol [0001 4 o1 ! I 000 9/
81:10:0 000 0 01 I 0001 I o1 I ! SL
¥1:10:0 000 0 01 I 0001 I o1 I I YL
10:10:0 000 0 ()1 I 0001 I 01 I I €eed IS9LIojeIsua[eIUOUIgINd €L
§0-00-0 000 0 0 0 80°¢€C £ £l £ £ coo 7L
90:00:0 000 0 0 0 8¢°CI C €l [4 4 IL
L0:00:0 000 0 0 0 8¢°CI C €l € € 0L
90-00:0 000 0 0 0 80°¢€T € €l 4 ¢ LYOL 1S9 103BISUSDI[NOUIHIND 69
£0-00-0 000 0 001 [00001 [! [I ©oo 89
£0:00:0 000 0 001 I 00001 I I I ! L9
£0:00:0 000 0 001 I 00001 I I I I 99
£0:00:0 000 0 001 I 00001 I I I I 0s ISLIUTENSUODSIUIUWRIH LIJO S9
00-00°0 000 0 0 0 000 0 ! 0 0 ©oo %9
00-00:0 000 0 0 0 000 0 I 0 0 €9
00-00:0 000 0 0 0 000 0 I 0 0 9
popre dwe-y dwe-y poyrndwe poyrdwe [eursuo

(stury) odAy poryy odA) pory Afuo poqry jueinwa oI polIy Siuenux 91008

Qwiy, 9seaIou] 9, A[MON # OSBAIOU] 9, A[MON # OSBOIOU[9 A[MON # PO[IIS # Posnoo] # NN % sse[D Pl

(ponunuod) yajqer

pringer

A's

Page 35 of 55 128

(2022) 27:128

Empir Software Eng

St10°0 000 0 £0°¢ I rel 14 £€ [I 000 0]
0€:20:0 €0'¢ I €0'¢ I el ¥ €€ C C €01
6¢£:20:0 €0'¢ I €0'¢ I [4¥4! 14 €€ C C 01
£€:20°0 000 0 €0'¢ I el ¥ (33 I I 0s ¢ 91 ISALIB00DVM 101
20-00-0 000 0 0 0 000 0 4 0 0 oo 001
10:00-0 000 0 0 0 000 0 ¥ 0 0 66
20-:00:0 000 0 0 0 000 0 14 0 0 86
20:00:0 000 0 0 0 000 0 4 0 0 L1999 ST I srpuewiwo)afewAdoyTud L6
10°00°0 000 0 0 0 000 0 £ 0 0 000 96
10:00:0 000 0 0 0 000 0 € 0 0 S6
10:00:0 000 0 0 0 000 0 € 0 0 76
10:00:0 000 0 0 0 000 0 € 0 0 SL TII I ISQLpuelIODINOqYTUd €6
SI-0r0 000 0 69 ! LL0E 14 £l I ! coo 76
Srv1:0 000 0 69°L I LL'OE ¥ €l I I 16
[ATARI 000 0 69°L 1 LL'OE 14 €l 1 I 06
€6-€1:0 000 0 69°L 1 LLOE 14 €l I I Ts9¢ 29 4! IS9LIPSNSA 68
0£:00°0 000 0 0 0 000 0 £ 0 0 coo 88
6€:00:0 000 0 0 0 000 0 € 0 0 L8
17:00:0 000 0 0 0 000 0 € 0 0 98
0%:00:0 000 0 0 0 000 0 € 0 0 0s IS G IsoLpuelimion[auueyIdvRdsd S8
1£°00°0 000 0 0 0 vl ! 141 I ! coo 8
91-10:0 000 0 0 0 6C1 4 4! 4 [4 €8
popie popre dwe-y dwe-y pogrdwe payrdwe [eursuo spoyjowt [eursro

(stuniy) odAy porr odAy paqIy Auo po[[Iy juenwa PaIIy PO SUBINW SPOYIAW 189) Q100 [ND Spoylew

QWIIJ, 9SBAIOU] 9, A[MON # OSBAIOU] 95 A[MON # OSeIdU] 9, A[MON # PO[[I # POSNOOJ# MON# N % O0[# ISAL# sse[) Pl

(ponunuoo) yajqer

pringer

H's

(2022) 27:128

Empir Software Eng

128 Page 36 of 55

£7:00:0 §T9 1 0 0 §c9 1 91 I I 9Cl
1¥:00:0 §T'9 I 0 0 9 I 91 I I LS'8C 0CC L IsoLeurysmelSuz 6Tl
#0-00-0 000 0 0 0 000 0 8 0 0 oo 71
¥0-00:0 000 0 0 0 000 0 8 0 0 €l
¥0-00:0 000 0 0 0 000 0 8 0 0 ol
¥0:00:0 000 0 0 0 000 0 8 0 0 wvr et [4 ISQLWEANSALIMIUS[RAIUZ [T
10-20°0 000 0 are 4 £1°8L 0§ 9 6/ 61 coo O¢l
€1:€0:0 S99 14 cre C €1'8L 0S ¥9 81 81 611
80-€0:0 61°LI Il cre C 88'IL o ¥9 14! 81 811
01:€0:0 69'Y € (483 C 969L 6% 9 cl vl vI'vy 0¢ 01 ISoLsIesuLlg LI
#5000 000 0 €€l 4 £€€l 4 94 4 4 oo 911
90-10:0 c€eel T L99 I 00°0¢ € Sl € € SI1
LO*10:0 c€eel 4 L99 I 00°0¢ € Sl € € 141!
80-10:0 €eel 4 L99 I 00°0¢ € Sl € € vSor 9¢ 8 1891 10ZISOYIOBXHINOKL TG €11
£2°00°0 000 0 0 0 000 0 ¥ 0 0 coo 711
9¢:00:0 00°S¢ 1 0 0 0008 4 4 1 I 11
£€:00:0 00°sT 1 0 0 000S 4 4 I I o1t
¥€:00:0 00°5¢ I 0 0 00°0s C % ! I 9L'Il LT ¥ 1sepuoneurquo)Aiosindwodig 601
20°00-0 000 0 0§ I 0000 4 4 ! I co0o g0l
¥0-:00:0 000 0 0s I 00°00C 14 C I I LOT
¥0-00:0 000 0 0s I 00°00C 14 C 1 I 901
¥0:00:0 000 0 0s I 00°00C ¥ C I I 0c €Il I IsoLandMoySIg SO1
papre papre dwe-y dwe-y poyrdwe poyrdwe [eursuo spoyjowt [eursuo

(ssuriy) odKy pory odAy porry Auo poqry jueinw PIIIY Po[[IY SiuBINW Spoyeu 19) 21008 D spoylowr

QW] 9sBAIOU] 95 A[MON # OSBAIOU 9, A[MON # OSBAIOU] 95 A[MON # PO[[IN # POSNOOJ# MON# 'INJN % OJ0[# ISAL# sse[) Pl

(ponunuoo) ya|qer

pringer

&H's

Page 37 of 55 128

(2022) 27:128

Empir Software Eng

#1-00°0 000 0 81 I Y44 8 g¢ I I coo gyl
S1:00:0 000 0 (4.1 I Syl 8 99 I I Lyl
S1:00:0 000 0 (4 I SSyl 8 99 I I 4!
¥1:00:0 000 0 (2! I Syl 8 99 I I ¥0'1vy 8SS [T ISSDISVIPAISONTAIN SPI
00-00-0 000 0 0 0 000 0 I 0 0 coo]
00-00:0 000 0 0 0 000 0 1 0 0 34!
00:00:0 000 0 0 0 000 0 1 0 0 wl
00-:00-0 000 0 0 0 000 0 ! 0 0 6cvl €0l 14 1S SORIAIAIN T¥1
1§°80-0 000 0 6l [1£°68 9 L [[coo 0Opl
1€:80:0 000 0 6Tl I 1L°S8 9 L I I 6¢1
8+%:80:0 000 0 6Tl I 1L°S8 9 L I I 8¢l
S1:60:0 000 0 6l I 1L°68 9 L I I 16761 v € Ispprewyoudgedd LEIT
£0°00-0 000 0 gl ! 00°s¢ 4 8 I ! coo 9¢]
L0:00:0 000 0 Sl I 00°S¢ 4 8 I 1 Sel
L0:00:0 000 0 ¢l ! 00°S¢ 4 8 I I Pel
80-00:0 000 0 Sl 1 00°Sc (4 8 I I 9oLy 6¢ € Isorprenpsuisiedzdd €€l
LI°L2°0 000 0 0 0 000 0 8 0 0 coo Z¢l
8C:TE0 000 0 0 0 000 0 8 0 0 1€l
96:0¢:0 000 0 0 0 000 0 8 0 0 0¢l
0I°1€:0 000 0 0 0 000 0 8 0 0 90Ly €8 91 IsorsweWnSIyIOD 671
6£-00°0 000 0 0 0 000 0 91 0 0 coo g7l
¥1:00:0 §C¢9 1 0 0 ST9 I 91 I I LTl
popre popre dwe-y dwe-y poyrndwe poyrdwe [euruo spoyjowt [eursuo

(ssury) odAy pory odAy porry A[uo poqy jueynwa PO PO SuBINW SPOYIAW 1S9} 2100 D Spoyieu

QwIrl, 9OseaIoU] 95 A[MON # OSBAIOU] 95 A[MON # OSBAIOU] 9 A[MON # PO[[II# POSNOOJ# MON# IMN 9% OO # IS, # sse[D) Pl

(ponunuoo) yajqer

pringer

H's

(2022) 27:128

Empir Software Eng

128 Page 38 of 55

£0-€0-0 000 0 o1 € 00°0€ 6 0¢ ¥ 14 OLT
10:€0:0 000 0 01 € 00°0% 4! 0¢ S S L¥ee 8l 9 1S IUIOdXLIND 691
£0-00°0 000 0 0 0 6t I Z I ! coo 89|
11:00:0 LS'8T C 0 0 98°Cr € L € € L91
S1:00:0 6C1 I 0 0 LS'8C C L C C 991
€2:00:0 LS'8CT [4 0 0 98y € L € € LOLL ST I IsopuonnqusiqrenueuodxgiNd §91
#0-00-0 000 0 0 0 000 0 L 0 0 oo $9]
£0-:00-0 000 0 0 0 000 0 L 0 0 €91
£0:00:0 000 0 0 0 000 0 L 0 0 o1
£0:00:0 000 0 0 0 000 0 L 0 0 8¢ 0 C 1so100f01ddO 191
92-00-0 000 0 0 0 000 0 9 0 0 oo (91
£€2:00:0 000 0 0 0 000 0 9 0 0 6S1
¥2:00:0 000 0 0 0 000 0 9 0 0 861
92:00:0 000 0 0 0 000 0 9 0 0 ¥e 191 € 1591 s101depyI01ESIABNIO LS T
z£°00-0 000 0 0 0 000 0 ol 0 0 coo 9¢]
9¢:00:0 000 0 0 0 000 0 01 0 0 SSl
G€:00:0 000 0 0 0 000 0 01 0 0 12!
$€:00:0 000 0 0 0 000 0 01 0 0 ILSE ¥8 9 1S9 SeAUB)O[QeSTRIASY €51
#0-10-0 000 0 80T ! 80°C I 14 I ! coo 761
S1:10:0 000 0 80C I 80°C I 87 I I IS1
01:10:0 000 0 80'C 1 80°C I 87 I I 0SI
80-10:0 000 0 80'C I 80°C I 87 I 1 886 ol I ISQLISIOPUSYSUIPYSY 6171
papre popre dwe-y dwe-y poyrdwe poydwe [eurduo spoyjow [eursuo

(stury) odAy porrry odAy poriry Auo poqy jueInw pary po[[Iy SiuBINW SpoyjewW 1S9) 21008 D spoyreuwr

QwI], 9SeAIOU] 95 A[MON # OSeQIOU] 9 A[MON # OSBAIOU] 95 A[MON # PO[[TS # PoOSnooJ# MON# NN % O0[# ISOL# sse[) Pl

(ponunuoo) ya|qer

pringer

&H's

Page 39 of 55 128

(2022) 27:128

Empir Software Eng

6£:00-0 000 0 £€°€€ ! 2999 4 £ I ! coo Z6l
£€:00:0 000 0 £eee I L9°99 4 € I I 161
€:00:0 000 0 €eee I L9°99 C € I I 061
£€:00:0 000 0 £eee I L9'99 C € I I I8 11 5o ee[duR 20T TUd 681
SI°10°0 000 0 2991 4 00001 44 ar 4 4 000 88]
91-20:0 0008 9 £e'8 I L9991 0T Cl 8 8 L81
20-20:0 0008 9 £e'8 I L9991 0C Cl L L 981
86-10:0 0008 9 £€'8 1 L9991 0T 4! L L L96] €€ 11 1SaLpequigsd 81
12°00°0 000 0 0§ 4 00°S. £ t 4 4 000 $8]
$€:00:0 000 0 54 I 00°SL € ¥ 4 C €81
9¢€:00:0 000 0 54 I 00°SL € ¥ C C 4!
¥€:00:0 000 0 54 I 00°SL € ¥ 4 ¢ ggee 09 G 1SOLWAI[ATLSSIAIXRLIOS(IPUSSSA 18]
20-00-0 - 0 - 0 - 0 0 0 0 000 (81
20:00:0 - 0 - 0 - 0 0 0 0 6L1
20:00:0 - 0 - 0 - 0 0 0 0 8LI
20-:00:0 - 0 - 0 - 0 0 0 0 0 96 C 1SLPuUeSeT L LLI
#1-00-0 000 0 or I 000Z 4 or I I 000 9g/]
87:00:0 0001 I 01 I 00°0¢ € (0] 4 C SLT
92:00:0 000¢ C 01 I 00°0% ¥ ()1 € € YLI
92:00:0 00°0¢ 4 01 I 00°0% 14 ol € € v0'LE 891 I 159 deNuOnNAIISIATLL €L1
I1-20-0 000 0 o1 £ £9°9¢ 8 0¢ L L c0oo LI
SE¥0-0 000 0 01 € 00°0% 1! 0¢ S S IL1

popie popie dwe-y dwe-y poyrdwe payrdwe eursuo spoyjow [eurSuo

(scuriy) odAy poqry odAy paqy Auo poqy jueinw PO Po[[IY siueINW Spoyjow 1S9) 21008 IND Spoyieuw
QWIIJ, 9SeaIOU] 9, A[MON # OSBAIOU] 9 A[MON # 9SBAIOU] 9 A[MAN # PO[[TS # POSNOOJ # MIN# NN % O0[# ISOL # sse[D PI
(penunuod) ¢ 3|qel

pringer

H's

(2022) 27:128

Empir Software Eng

128 Page 40 of 55

61100 000 0 0 0 000 0 9 0 0 000 80C
LT-10:0 000 0 0 0 000 0 S 0 0 LOT
€I-10:0 000 0 0 0 000 0 S 0 0 90¢
SI-10:0 000 0 0 0 000 0 S 0 0 9r'8¢ T8I 11 1SQLIS[pUBHIONH VM SOT
10:00-0 000 0 0 0 000 0 Il 0 0 000 $0C
10:00-0 000 0 0 0 000 0 I 0 0 £0¢
00:00:0 000 0 0 0 000 0 I 0 0 0¢
00:00:0 000 0 0 0 000 0 I 0 0 ¢ggee ol ! ISOLSBAUBDWX VM 10T
01:00-0 000 0 0 0 000 0 ! 0 0 000 00C
60:00:0 000 0 0 0 000 0 I 0 0 661
60:00:0 000 0 0 0 000 0 I 0 0 861
C1:00:0 000 0 0 0 000 0 I 0 0 ¢gee IS I 1S9 I0IEIOUDAN VM L6 T
0£°10°0 000 0 96°C I 69°L £ 6& ! ! 00096
61-10:0 000 0 9¢'C 1 69°L € 6¢ I 1 Sol
L1100 000 0 9¢¢ I 69°L € 6¢ I I y61
12100 000 0 95C I 69'L € 6€ I I 86€ 9SI 1 1sqLA10nsodoyasewrpaseg£10100qTUd €61

popre popre dwe-y dwe-y paygidwe poyrdwe [eursuo spoyiow [eurduo

(s:ur:y) odAy poq[y od£) poqry A[uo poqry Jueinw parmy Po[[Y siuBInW SpOyjux 1891 Q1008 [N Spoyleux
QWIL], 9SLAIOU] 9 A[MON # OSBAIOU] 9 A[MON # SLIOU] 9 A[MON # PO[IIY # POSNoo] # MIN # N 9% O0[# ISAL # sse[) pI

(ponunuoo) y3jqer

pringer

A's

Empir Software Eng (2022) 27:128 Page 41 of 55 128

The columns in this table indicate:

1d: Used as a reference for the row in the table.

Class: The name of the test class to be amplified.

Test methods original: The number of test method in the test class before test
amplification.

loc CUT: The number of lines in the class under test.

% Mut. score: The mutation score (percentage) of the test class before test amplifica-
tion.

New test methods: The absolute number of newly generated test methods after test
amplification.

Focused methods: The absolute number of focused methods in the generated test
methods.

Killed mutants original: The absolute number of killed mutants by the test class before
test amplification.

Newly killed amplified: The absolute number of newly killed mutants by the test class
after test amplification.

% Increase killed amplified: The increase (in percentage) of killed mutants by the test
class after test amplification.

Newly mutant A-amp: The absolute number of newly killed mutants only by Assertion
amplification (Njserarion = 0 in Algorithm 1).

% Increase killed only A-amp: The relative increase (in percentage) of killed mutants
only by assertion amplification.

Newly killed type aided: The absolute number of newly killed mutants by type
sensitive input amplifiers.

% Increase killed type aided: The relative increase (in percentage) of increase killed
mutants by type sensitive input amplifiers.

Time: The duration of test amplification process in the hours-minutes-seconds (h:m:s)
format.

RQ2: To what extent are improved test methods considered as focused? For answering
this research question, we use values in the column # Focused methods. We use the same
definition for focused methods as DSPOT:

Focus is defined as where at least 50% of the newly killed mutants are located in a
single method. Danglot et al. (2019b)

Generating focused tests is important because analysing a focused test is easier (most

mutants reside in the same method under test) hence should take less review time from
developers. For calculating this value, we use generated annotations by SMALL-AMP on the
newly generated test methods which show the details of the killed mutants by the method.

We see that almost all amplified tests are focussed. Only on two cases (BlInsetsTest,

#117 and #118) we see that some generated methods are not focused.

Answer to RQ2: We see at least one focused test method in all
amplified cases. This illustrates that amplified tests seldom overwhelm
developers, hence should save valuable developer time.

@ Springer

128 Page 42 of 55 Empir Software Eng (2022) 27:128

5.4 RQ3 — Mutation Coverage

RQ3: To what extent do improved test classes kill more mutants than developer-written
test classes? In 86/156 cases (55.12%), SMALL-AMP successfully amplified an existing test
class. The distribution of the number of killed mutants, and increase kill are presented in
Figs. 13 and 14 for all test classes, highly covered as well as poorly covered ones. The
number of newly killed mutants in these classes (column # Newly killed amplified) varies
from 1 up to 50 mutants (case #119). In the executions amplifying test classes having high
coverage, SMALL-AMP is able to amplify 38 out of 78 (48.7%), and for the test classes having
poor coverage this number is 48 out of 78 (61.5%). Therefore, we see more amplification in
the classes with poor coverage. The relative increase in mutation score (column % Increase
killed amplified) varies from 2.08% (cases 149-151) up to 200% (cases 105-107). It is also
observable regarding to these metrics that amplification on classes with poor coverage is
more successful.

Surprisingly, despite running MUTALK with its all mutation operators, the mutation test-
ing framework did not manage to create any mutant for the class TLLegendTest (cases
177-179). MUTALK mutation operators work statically and only a limited set of well-known
transformations are provided in the tool.

The Effect of Randomness In this section we report the effect of randomness on the results.
Based on the Algorithm 1, the main randomness happens during the input-amplification
(Line 10) and oracle reduction (Line 12) steps. Therefore, we expect to see the mini-
mum difference in the results generated by assertion amplification (Line 5). The column
11 (# Newly mutant A-amp) shows the absolute number of killed mutants only by asser-
tion amplification. These values are identical in executions for all classes except the case
81 (TLExpandCollapseNodesActionTest). The reason for this exception is that a
specific mutant may be killed by input amplification in a test method, and if it is not killed,
it will be killed by assertion amplification in the next test method. Based on the informa-
tion presented in Table 4, regardless of time, the same result are achieved from different
executions in 43 out of 52 test classes.

For a deeper investigation, we randomly select 5 test classes from the cases that are
affected by randomness, and 5 test classes from the cases without an observable change.
Then, we run SMALL-AMP on these classes for 10 times (10 class x 10 times = 100 runs).
Table 5 shows the results of this experiment. In the column with title X70, we report the
number of newly killed mutants for each run in order, which is the most important metric
for amplification. In the column X3, we also echo the values from column # Newly killed
amplified in Table 4 to make the comparison easier. The next two columns compare the
Median and Average values in these two columns. The first 5 rows in this table are the cases
affected by randomness, and the next 5 rows are cases without an observable effect.

When we compare the values in columns X/0 with X3, we still do not see any visible
effect from randomness in the rows 6 to 10. In the first 5 rows, we see the median values and

All test classes [[[—ee e ® ® @8
Poor coverage Dj—{ L |] - ==
High coverage °

g coverag D_{ \ \ \ \ \
0 10 20 30 40 50

Fig. 13 The distributions of the number of killed mutants

@ Springer

Empir Software Eng (2022) 27:128 Page 43 of 55 128

All test classes [[F———®e @ ® ®
Poor coverage l::}—{]]

High coverage ':}\—{ .\ ? ! ? ! ! ! ! ! |

-20 O 20 40 60 80 100 120 140 160 180 200 220

Fig. 14 The distributions of the increase kills

average values in both experiments are similar. In three cases (rows 2, 3 and 4), the values
of X3 did not achieve the maximum number of killed mutants seen in X70. In one case (row
1), we see some runs lacking any improvements in X7/0 while all of its runs in X3 shows a
successful amplification. To sum up, we see that the randomness has an effect on the result,
but the impact is minimal and does not invalidate the findings. In addition, repeating the
analysis 3 times is justifiable since running 10 times adds little extra information for a large
increase in processing time.

Answer to RQ3: SMALL-AMP successfully amplified 86 test classes
out of 156 cases (55.12%). Even for stronger test classes, SMALL-AMP
improved the mutation coverage in 38 out of 78 cases. In test classes
with poor coverage, test amplification becomes even more effective:
SMALL-AMP increased the mutation coverage in 48 out of 78 cases
and the absolute and relative increase in mutation score was higher.

5.5 RQ4 — Amplification Steps

RQ4: What is the contribution of input amplification and assertion amplification (the
main steps in the test amplification algorithm) to the effectiveness of the generated
tests? As we reported in Section 5.4, in 86/156 cases (55.12%), the improvements are
achieved from input-amplification and assertion-amplification cooperation. In this research

Table 5 The result of running SMALL-AMP on 10 test class for 10 times

Test class X10 X3 Median Average
(X10, X3) (X10, X3)

1 PMBernoulliGeneratorTest 3,3,0,0,2,2,2,3,2,3 3,2,2 2.0,2.0 2.0,2.33
2 TLHideActionTest 0,4,1,2,2,4,2,1,2,2 0,3,2 2.0,2.0 2.0, 1.67
3 TLExpandCollapseNodesActionTest 2,2,2,2,2,2,3,2,2,2 2,2,2 2.0,2.0 2.1,2.0
4 PMExponentialDistributionTest 3,2,1,4,3,2,2,3,3,2 3,2,3 2.5,3.0 2.5,2.67
5 TLDistributionMapTest 3,4,3,4,4,4,4,3,3,4 4,4,3 4.0,4.0 3.6,3.67
6 PMBinomialGeneratorTest 1,1,1,1,1,1,1, 1, 1, 1 1,1, 1 1.0,1.0 1.0,1.0
7 DSSendUserTextMessageltemTest 3,3,3,3,3,3,3,3,3,3 3,3,3 3.0,3.0 3.0,3.0
8 GQLSchemaGrammarTest 7,7,7,7,7,7,7,7,7,7 7,7,7 7.0,7.0 7.0,7.0
9 BlCompulsoryCombinationTest 2,2,2,2,2,2,2,2,2,2 2,2,2 2.0,2.0 2.0,2.0
10 ZnMessageBenchmarkTest 0,0,0,0,0,0,0,0,0,0 0,0,0 0.0,0.0 0.0, 0.0

@ Springer

128 Page 44 of 55 Empir Software Eng (2022) 27:128

question, we study the results generated only by assertion-amplification, and also generated
by the type sensitive operators.

Contribution of the Assertion-Amplification Step In this section, we filter all amplified
test methods that are generated only by assertion amplification. In other words, we only
account the improvements from all amplified test methods that are selected from the first
assertion amplification (Line 5 in Algorithm 1). The column 11 (# Newly mutant A-amp)
shows the absolute number of killed mutants only by assertion amplification; column 12 (%
Increase killed only A-amp) also shows the relative increase. The reported results in Table 4
shows that in 61/156 cases (39.1%) at least 1 mutant is killed only by the assertion ampli-
fication step. Improvements in four classes (cases 53-55; 65-67; 73-75; 149-151) achieved
only by adding new assertions.

Contribution of the Type Sensitive Input Amplifiers Here, we filter all amplified test
methods that in at least one of its transformations, a type sensitive input amplifier (in our
case method-call-adder) is used. While type-sensitive operators benefit the information pro-
vided by dynamic profiler step (Section 4.1), the contribution of these operators is important
because it can show the effectiveness of dynamic profiling.

Column 13 (# Newly killed type aided) shows the absolute number of newly killed
mutants by the type sensitive input amplifiers. Column 14 (% Increase killed type aided)
also shows the relative increase. We see that in 30/156 cases (19.2%) the type sensitive
input amplifiers contribute to the result. Especially for 2 test classes (WebGrammarTest
rows 37-39, and ZnStatusLineTest rows 125-127), SMALL-AMP was able to amplify
the tests only by the type sensitive input operators.

To assess the impact of type profiling, we quantified the effect of the steps that rely
on type profiling. We therefore extended the analysis with an additional evaluation step
where we disabled the type profiler in the algorithm, as well as the type sensitive input
amplifier (method addition amplifier) and ran the tool on all test classes. The results for this
experiment are mentioned in the forth row for each test class in Table 4 (denoted by o o o).
We focus on cases in which type-sensitive input amplifiers improved the coverage in at least
two of three runs (10 test classes, cases starting with 33, 37, 101, 109, 113, 117, 125, 165,
173, 185). In 8 cases we see that disabling the profiling and also the type sensitive operators
decrease the improvements and only in two cases we see no difference (case 101) or a slight
improvements (case 117).

Answer to RQ4: Our experiments demonstrate that amplifying the
tests only using assertion amplification is less efficient than in combi-
nation with input amplification. Moreover, the extra information gen-
erated by dynamic type profiling helps input amplification in killing
more mutants.

5.6 RQ5 — Comparison
RQ5: How does Small-Amp compare against DSpot? With this research question, we

compare our results from quantitative and qualitative studies with corresponding results
from DSPOT reported in Danglot et al. (2019b).

@ Springer

Empir Software Eng (2022) 27:128 Page 45 of 55 128

Table 6 shows how the results from SMALL-AMP and DSPOT are comparable. SMALL-
AMP is validated against 52 test classes. It has successfully amplified 28, 29 and 29 of them
(~55%), while DSPOT has been validated against 40 test classes of which 26 cases were
improved (65%). The most notable differences between the results from SMALL-AMP and
DSpoT are the number of mutants in two ecosystems and consequently the number of newly
generated test methods (denoted by * in the Table 6). These differences can be attributed
to the use of two different mutation testing frameworks in two different languages. SMALL-
AMP uses MUTALK which has notably fewer mutation operators than the DSPOT counterpart
PITEST. To reduce the effect of the mutation testing framework, we calculate the relative
increase in killed mutants within the two ecosystem as follows:

#Total. Mutants.killedy ey
#Total Mutants killedyriginal

%Total.Inc.killed = 100 x

This value is shown in the row number 12 in the Table 6 for two experiments. It is 14.03%
in total for SMALL-AMP, and 20.26% for DSPOT.

We have also submitted 11 pull-requests by using SMALL-AMP outputs and 8 of them
were merged by developers (*72%), while Danglot et al. submitted 19 pull requests derived
from DSPOT output and 13 of them merged successfully (68%).

Finally, it is worth mentioning that SMALL-AMP is configured as Nyaxinpur = 10 which
means the reduce step (Algorithm 1, line 12) select 10 test-input in each iteration. This value
for DSPOT is not reported in their paper. Increasing this hyperparameter may improve the
result, but it also may increase the execution time significantly.

Answer to RQ5: The results from SMALL-AMP and DSPOT in two
different ecosystems are comparable. SMALL-AMP and DSPOT have
been successful in amplifying respectively 55% and 65% of their input
test classes. We also see ~72%and 68% merged pull requests in the
tests derived from SMALL-AMP and DSPOT outputs.

Table 6 Comparing results in SMALL-AMP and DSPOT

Id Metric SMALL-AMP DSpoT
#1 #2 #3
Projects 13 13 13 10
Test classes 52 52 52 40
Test methods 403 403 403 220
4* New generated test methods 71 76 75 471
Amplified test classes 28 29 29 26
% Amplified test classes 53% 55% 55% 65%
7* # Total killed mutants by original 1102 1102 1102 7980
8* # Total newly killed mutants 156 151 157 1617
9 % Total increase killed 14.15% 13.70% 14.24% 20.26%

@ Springer

128 Page 46 of 55 Empir Software Eng (2022) 27:128

5.7 RQ6 — Time Costs

RQ6: What is the time cost of running Small-Amp, including its steps? Time costs is an
important factor when we study the practicality of test amplification tools. In this research
question, we report and compare the execution time of SMALL-AMP and the relative cost
of each step. Figures 15 and 16 illustrate a series of box-plots derived from the recorded
execution time during the experiments in Table 4. In these figures, Init . refers to all
initializing steps, includes the dynamic profiling to collect type information (Section 4.1).
Here we also calculate an initial mutation score for the original test suite. TAmp refers to the
input amplification step. This step loops over all input amplification operators (Section 3.2)
and afterwards reduces to Nyaxinputs Of current inputs and discarding the rest (Section 4.2).
AAmp represents the assertion amplification step (Section 3.3), while Sel . selects all test
methods that increase the mutation score (Section 3.4). Read . concerns the post-processing
steps to increase the readability of the generated tests, in particular the oracle reduction
(Section 4.3). Finally, Tot . shows the entire execution time for a class.

Figure 15 shows how the execution time is distributed for total execution time and also
for each step in seconds. The horizontal axis presents the number of seconds in logarithmic
scale. The diagram includes also the values for the median and the upper whisker.

Regarding total execution time (Tot .), half of the executions finished in less than 36.7
seconds (the median value). Furthermore, the diagram shows that the majority of ampli-
fication (upper whisker) finished in less than 334.4 seconds (5 minutes and 34 seconds).
However, we see 25 outliers that refer to the instances that finished in more than 335 sec-
onds. If we set a fixed time budget, for instance a 10 minutes budget for each class, the test
amplification process for these classes will not terminate properly. This show the importance
of considering time budget management in test amplification tools.

The median value for other steps are: initializing 1 second, input amplification 4.8 sec-
onds, assertion amplification 13.7 seconds, selection by mutation testing 10.1 seconds and
post-processing steps 0.7 seconds.

Figure 16 illustrates the relative proportion of time test amplification dedicates to each
step. So, the execution time for each step is divided to the total amplification time to
compare the steps relatively.

Tot. |- e
Read. |-
Sel. |-
AAmp |- ®
TAmp }—{
Init. |~ }—{
B T T

Fig. 15 The distribution of absolute execution time (in seconds)

@ Springer

Empir Software Eng (2022) 27:128 Page 47 of 55 128

Read. I %90'8%) ey

Sel.| F— | 24.5% | {66'8%
AAmp|] | 38.8% | | o
TAmp - , % 3-7'7% [| []

mit. [[[55% e -

\ \ \ \ \ \
0 20 40 60 80 100

Fig. 16 The relative distributions of the time-cost (percentage)

The profiling step and the oracle reductions steps are the fastest steps. The median value
for each of these steps are respectively 3.2% and 3.4%. Therefore, we can say profiling
and oracle reduction steps do not add much time overhead to the overall process. Next,
the input amplification step takes about 11.3%. A considerable portion of execution time
is spent during assertion amplification (median 38.8%, upper whisker 95%). The median
execution time related to selection step, in which mutation testing is ran, is 24.5%. We
suspect the execution time for mutation testing would be more if MUTALK would generate
more mutants.

Answer to RQ6: The majority of classes in our dataset has been
amplified in less than 5 minutes and 34 seconds. However, in some
cases the execution takes longer with a maximum of 2 hours and 34
minutes. Therefore, a time budget management mechanism is needed
in the test amplification tools. In the execution time for each steps,
we see that the profiling and oracle reductions steps (the extra steps
compared to the original DSPOT algorithm) do not add much overhead
to the overall process.

6 Threats to Validity

As in any empirical research, we identify factors that may jeopardise the validity of our
results and the actions we took to reduce or alleviate the risk. Consistent with the guidelines
provided by Wohlin et al. (2000), we organise them into four categories.

Construct Validity Do we measure what was intended? For RQ1 (Pull Requests), we man-
ually selected test methods which we considered valuable additions to the project. And we
provided a motivation for the pull request based on a human interpretation of the extra
mutants killed. Thus, the percentage of accepted pull requests is a flattered result. If we
would have submitted all amplified test methods the results would be far lower. We con-
sider this risk as minimal, because SMALL-AMP at the current stage should never be seen as
a fully automated code synthesizer tool but rather as a recommender system supporting the
human-in-the-loop.

@ Springer

128 Page 48 of 55 Empir Software Eng (2022) 27:128

For RQ2 to RQ4 we heavily rely on mutation coverage as a proxy for the corner cases
the amplified tests are supposed to cover. There is an ongoing debate in the mutation testing
community of whether mutation operators can serve as proxies for actual faults. Today, there
is no alternative so we settled with mutation coverage. But if ever another measure for test
effectiveness comes along we need to revise the results.

Internal Validity Are there unknown factors which might affect the outcome of the analy-
ses? For RQ1 (Pull Requests), we don’t have any knowledge about the policy the projects
had concerning pull requests submitted by outsiders. In the Pharo community, most devel-
opers know one another and are likely to trust contributions. However, for our study it was
the first author who submitted the pull-requests and at that point in time he was a newcomer
in the community. For the three pull requests which were ignored, we don’t know whether
this newcomer submission played a role.

External Validity To what extent is it possible to generalise the findings? We demonstrated
that test amplification is feasible, even for dynamically typed language. We have constructed
a proof-by-construction for the Pharo/Smalltalk ecosystem. However, we cannot make any
claims regarding other dynamically typed languages (Python, Ruby, Javascript, ...). We are
quite confident that type profiling is the key to make test amplification successful in such
a context. However, coding conventions are equally important and this may jeopardise the
kind of input amplification operators that work.

Reliability (a.k.a. Conclusion Validity) Is the result dependent on the tools? As mentioned
earlier, we heavily rely on mutation coverage as calculated by MUTALK. MUTALK lacks sev-
eral mutation operators compared to the PITEST tool used in the DSPOT paper. This implies
that SMALL-AMP will generate fewer test cases and that the newly killed mutants will also be
generally lower. We mitigated this threat by always reporting the absolute number combined
with the relative increase (in percentage).

The other threat to conclusion validity in the impact of randomness. SMALL-AMP works
based on applying random transformations on the tests. Most importantly, the actual ampli-
fied tests surviving the Input Reduction step (see Section 4.2 — p. 18) may vary from one
run to another. We applied the tool on different classes in different projects from various
domains, and achieved amplified tests in all circumstances. In addition to the variety in the
projects, we ran the tool three times on each test class. Thus, the impact of randomness
should be small at best.

7 Related Work

Test amplification systems can vary based on the engineering goal. In addition to the ampli-
fication of the code coverage (Thummalapenta et al. 2011; Yoo and Harman 2012) or
mutation score (Baudry et al. 2005; Patrick and Jia 2017), researchers have used test ampli-
fication for other goals like fault detection (Milani Fard et al. 2014; Pezze et al. 2013),
oracle improvement (Fraser and Zeller 2011; Xie 2006), fault localization (R6pler et al.
2012; Xuan et al. 2015), and incompatible environments detection (Chauvel et al. 2019).

A test amplification system may use search based techniques (Baudry et al. 2005; Yoo
and Harman 2012; Rojas et al. 2016; Xu et al. 2010) or symbolic and concolic execution
techniques (Xu and Rothermel 2009; Yoshida et al. 2016; Thummalapenta et al. 2011). The

@ Springer

Empir Software Eng (2022) 27:128 Page 49 of 55 128

results of the amplification can be added to existing test suite (Baudry et al. 2005; Yoo and
Harman 2012) or just modifying the current tests (Xie 2006). They also may consider only
new changes (Xu et al. 2010; Xu and Rothermel 2009) rather than working on the snapshot
of the entire project.

Our work is pretty close to DSPOT (Baudry et al. 2015; Danglot et al. 2019b) where
SMALL-AMP is an adaption of DSPOT into a dynamic language. This work, same as DSPOT,
also can be categorised under genetic improvement (Petke et al. 2018) where it takes advan-
tage of existing test suite as well as an automated search algorithm in order to find an
improved version of test code.

Brandt and Zaidman (Brandt and Zaidman 2021) use a lighter version of DSPOT to
increase the instruction coverage. They also provide an IDE plugin to make the developers
interplay with the test amplification tool possible. (Nijkamp et al. 2021) and (Oosterbroek
et al. 2021) address the readability of the amplified tests by choosing proper names and
removing redundant statements.

Dynamically-Typed Languages As we argued earlier, test case generation is well studied
in statically typed languages (Pacheco et al. 2007; Fraser and Arcuri 2013; Panichella et al.
2018) but there are only a few academic works that target dynamically typed languages. We
list the ones we were aware of below.

Lukasczyk et al. (2020) introduce automated unit test generation for Python, and the tool
PYNGUIN which works based on techniques used in statically typed languages more specif-
ically EvOSUITE (Fraser and Arcuri 2013) and RANDOOP (Pacheco et al. 2007). PYNGUIN
circumvents the lack of type information by assuming that the system under test contains
type information added by developers in terms of type annotations.

Mirshokraie et al. (2015) created a tool names JSEFT, which generate unit tests for
javascript functions and events by a record and replay technique. JSEFT relies on web
crawling to collect traces from javascript executions. They create test methods by replaying
the executions and adding new oracles using a mutation-based process (Fraser and Zeller
2012).

Wibowo et al. (2015) use a genetic algorithm to generate unit test code for the Lua script-
ing language. The algorithm starts from a random initialized population and then evolve
by crossover and mutation operators. The tool only generates assertions for primitive data
type values. SMALL-AMP on the other hand used recursive assertion generation to deal with
non-primitive types.

Mairhofer et al. (2011) introduce RUTEG, a test generation for Ruby based on genetic
algorithms. For each method under test, RUTEG statically processes the parse tree and
collects arguments and the list of methods invoked on each argument. Then they use prede-
fined and customized data generators to generate a part of code that is valid based on data
collected from the parse tree. RUTEG does not improve an existing test suite, but rather
generates the whole test suite itself.

Mutation Testing Using mutation testing as an actionable target for strengthening an exist-
ing test suite is used at large scale at Google (Petrovic et al. 2021; Petrovi¢ and Ivankovié¢
2018) and Facebook (Beller et al. 2021). These papers are close in spirit to DSPOT and
SMALL-AMP as both create new test casess to increase mutation coverage. However, these
works use professional developers to generate new tests (manual test amplification) while
DSpPoOT and SMALL-AMP illustrate that a recommender system is feasible.

@ Springer

128 Page 50 of 55 Empir Software Eng (2022) 27:128

8 Future Work

In this section, we present some open problems and the ways how SMALL-AMP and test
amplification tools can be improved in the future.

Test Amplification Ecosystem In the current implementation of SMALL-AMP, we run the
tool on the whole project. This way of using the tool has some drawbacks: since developers
should run it manually, they need a knowledge about the concept, the process and also the
tool interface; it may take a long time to amplify all classes in the project; the tool will
reamplify some parts of the project on each execution, which will increase the execution
time; and finally, developers need to deal with the output manually, they need to understand
it, polish the interesting tests, and merge them manually in the code base. Imposing such
extra work on developers is likely to make them loose their interest in using the tool often.

In the future, we will integrate the SMALL-AMP with a build system, for instance GitHub
Actions. The build systems will run the tool automatically on the specified events such as
on each push, or pull-request or periodically. Additionally, SMALL-AMP will amplify only
the recent changes on each run. It means that only the mutants in the changed parts will be
generated which will reduce the cost of amplification significantly. In this case, the amplifi-
cation will be run in the project level instead of running class-by-class. So, finding an exact
relation between the production classes and the test classes will also lost its importance: all
test methods covering a changed part can be included in the amplification.

Furthermore, we will build a web-based test editor dashboard to visualize the test ampli-
fication outputs, and also a GitHub-Bot to synchronize the Build system output, code base
and the dashboard. The developer can use this dashboard to assess the outputs, and also
customize the amplified test. The tests after the polishment will be reevaluated automat-
ically, and if it is green, it can be pushed to the code base. So, developers don’t need to
overwhelm themselves with tedious tasks and can benefit from test amplification in an
ecosystem automated by bots.

Extended Use-Cases for Dynamic Profiling Dynamic profiling is more than merely a type
inference solution. It can be generalized to collect various information about unit-under-test
based on dynamically running existing test suite. In some cases, statically typed languages
also can benefit the profiling mechanism. We enumerate two of these use-cases:

— Pure methods detection: An impure method is a method that looks like an accessor
but calling it causes a change in the state of the object (Sdlcianu and Rinard 2005). In
the scope of SMALL-AMP, identifying pure/impure methods is important during oracle
reduction. A new profiler can be implemented using the method proxies to serialize the
object state before and after method invocations. If the state is changed, we can infer
that the method is impure.

— Providing information for advanced input amplifiers: In this paper we proposed a basic
algorithm for test-input reduction (Section 4.2). By addressing the test-input explo-
sion problem, test amplification tools can benefit from wider range of input amplifiers.
Advanced input-amplifiers can exploit the profiling step to collect useful information
dynamically and increase their knowledge about the program under test. For example,
a profiler can collect all literal values from the covered methods and use them in literal
values amplification operator. Another example can be object transplantation between
test methods. A profiler can collect patterns of how objects are created and manipulated
and this information can be used in an input-amplifier.

@ Springer

Empir Software Eng (2022) 27:128 Page 51 of 55 128

Test Method Models, Best Practices and Structured Strings Unit tests in object-oriented
languages ideally are structured as a sequence of statements that instantiate an object,
manipulates its state, and asserts expected values. However, not every test fits this model
in real projects. Developers use helper methods, customized assertions, structured strings,
some optimizations like grouping the tests or parallelizing them. For instance, a developer
may write tests in XML files and load each file in a test method, so these tests heavily
depend on parsing structured strings.

If a test does not fit with the ideal test model, the current algorithm of test amplification
still can be used, but it may be less successful in producing strong results. We leave identify-
ing and adopting best practices of test methods as an open problem. Additionally, mutating
a structured string by understanding its syntax can also be interesting future work.

Using Patterns to Guide Test Amplification As an important future work, we suggest using
heuristics to guide the amplification algorithm. Large scale manual test amplification his-
tories like the work at Google (Petrovic et al. 2021; Petrovi¢ and Ivankovi¢ 2018) can be
analyzed to answer questions like: How often do developers write new test methods? Are
new test methods similar to an existing test? If they update an existing test method, what is
the relation of the updated test method and the mutant to be killed? What transformations
are applied to the test?

Answering these questions leads us to find some patterns in how real developers kill
mutants. These patterns can help the tool to prioritize some test methods and input ampli-
fiers for killing a particular mutant. Recent advances in deep learning or other program
synthesis techniques are promising and can be helpful in making test amplification tools
more intelligent (Abdi et al. 2019a).

Reducing the Mutation Testing Burden Test amplification generates tests to optimize
mutation coverage, however calculating the mutation score is a time-consuming process.
During test amplification, this mutation score is calculated multiple times for each test
method: in lines 6, and 14 of Algorithm 1 — p. 11. However, for a test to kill a mutant, it
first must reach the statement, then infect the program state, propagate to the output where
it must be revealed by an assertion (Lu et al. 2020; Vera-Pérez et al. 2019).

We can optimize the calculation of the mutation score by using a hierarchical coverage mea-
surement. For example, we can first run a code coverage tool, then we can run an extreme
transformation (Vera-Pérez et al. 2018), afterwards we only mutate the covered parts.

Another technique for reducing the mutation testing burden is to use mutation operators
that are learned from known common bugs like MUTATIONMONKEY (Beller et al. 2021).

Using Multiple Type-Inference Mechanisms The main drawback of using an existing test
suite for dynamic profiling is if a method is not covered in the test, we can not collect its type
information, hence can not add calls to such methods during input amplification. Static type
inference (Pluquet et al. 2009) or live typing (Wilkinson 2019) techniques can be helpful to
empower SMALL-AMP to generate method calls to such uncovered methods.

Involving Readability Metrics Based on a previous study (Grano et al. 2020), the most
important aspects for developers in assessing the quality of a test suite are readability and
maintainability. Although the code coverage metrics are necessary for identifying the poor
test suites, they are limited in distinguishing high-quality tests based on how practitioners
perceive the test quality. Since the goal of test amplification is to recommend new test cases
ready to be merged into the code base, considering readability and maintainability metrics
in the test amplification appears to be a critical next step.

@ Springer

128 Page 52 of 55 Empir Software Eng (2022) 27:128

9 Conclusion

In this paper, we introduce SMALL-AMP, an approach for test amplification in the dynami-
cally typed language Pharo/Smalltalk. The main algorithm of SMALL-AMP is adapted from
DSpoT, a test amplification technique designed for Java programs. In order to mitigate
the lack of type information, we exploit profiling information, readily available by run-
ning the test suite. We demonstrate that test amplification is feasible for dynamically typed
languages, by replicating the experimental set-up of DSPOT, including a qualitative and
quantitative analysis of the improved test suite.

In our qualitative analysis, we submitted pull-requests of an amplified test by SMALL-
AMP to the GitHub repositories of the projects in our dataset. From 11 pull-requests we
submitted, 8 were merged (*=72%). The developers’ comments on the pull-requests illus-
trate how valuable they perceive the new tests created by SMALL-AMP. The results from
our quantitative study show that SMALL-AMP succeeds to amplify 28 test classes out of 52,
approximately 53% of target classes, in 13 projects from our dataset. The majority of the
generated tests are focused, and all test amplification steps (including type profiling step)
play a critical role. The results from SMALL-AMP and the results from DSPOT are compa-
rable. We see x~72% merged pull-requests and 53% successfully amplified test classes in
SMALL-AMP, while for DSPOT these values are 68% and 65%. We also see that the value
of total increase killed between two tools in two different ecosystems are similar (14% in
SMALL-AMP and 20% in DSPOT).

In conclusion, the results of experiments show that by using a profiling step and col-
lecting type information, we can successfully adopt a test amplification approach in a
dynamically typed language.

Acknowledgements This work is supported by (a) the Fonds de la Recherche Scientifique-FNRS and the
Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under EOS Project 30446992 SECO-ASSIST (b)
Flanders Make vzw, the strategic research centre for the manufacturing industry. Bergel is very grateful to
Lam Research and Fondecyt Regular 1200067 for partially sponsoring this work.

This work originated during a sabbatical leave by Serge Demeyer in the RMOD lab. Stéphane Ducasse,
Marcus Denker and Julien Delplanque helped a lot with the intricacies of Pharo/Smalltalk; Pavel Krivanek
helped with MUTALK. Finally, we thank the developers reviewing and discussing our pull requests, they really
helped us in improving SMALL-AMP.

Funding This work is supported financially by two public funding organisation in Belgium and Chile. There
is no direct or indirect industrial support for the research reported here.

Declarations
Conflict of Interests We confirm that there are no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit.

@ Springer

Empir Software Eng (2022) 27:128 Page 53 of 55 128

References

Abdi M, Rocha H, Demeyer S (2019a) Adopting program synthesis for test amplification. In: Proceedings
of the 18th Belgium-Netherlands software evolution workshop, Brussels, Belgium. published at http://
ceur-ws.org, http://ceur-ws.org/Vol-2605/11.pdf

Abdi M, Rocha H, Demeyer S (2019b) Test amplification in the pharo smalltalk ecosystem. In: Proceedings
of the 14th edition of the international workshop on smalltalk technologies, IWST, vol 19, pp 1-7

Agibalov A (2015) What is a normal “functional lines of code” to “test lines of code” ratio? Teslarati. [on
line] https://softwareengineering.stackexchange.com/questions/156883/ — last Accessed In April 2021

Athanasiou D, Nugroho A, Visser J, Zaidman A (2014) Test code quality and its relation to issue handling
performance. IEEE Trans Softw Eng 40(11):1100-1125. https://doi.org/10.1109/TSE.2014.2342227

Baudry B, Allier S, Rodriguez-Cancio M, Monperrus M (2015) Dspot: Test amplification for automatic
assessment of computational diversity. CoRR: a computing research repository. arXiv:1503.05807

Baudry B, Fleurey F, Jézéquel J-M, Le Traon Y (2005) From genetic to bacteriological algorithms for
mutation-based testing. Software Testing, Verification and Reliability 15(2):73-96

Beller M, Wong C-P, Bader J, Scott A, Machalica M, Chandra S, Meijer E (2021) What it would take to use
mutation testing in industry—a study at facebook. In: 2021 IEEE/ACM 43rd international conference on
software engineering: software engineering in practice (ICSE-SEIP), pp 268-277

Bergel A, Cassou D, Ducasse S, Laval J (2013) Deep into pharo. Square Bracket Associates. http://books.
pharo.org/deep-into-pharo/

Black AP, Nierstrasz O, Ducasse S, Pollet D (2010) Pharo by example. Lulu. com

Brandt C, Zaidman A (2021) Developer-centric test amplification the interplay between automatic generation
and human exploration. arXiv:2108.12249

Chauvel F, Morin B, Garcia-Ceja E (2019) Amplifying integration tests with camp. In: 2019 IEEE 30th
international symposium on software reliability engineering (ISSRE), pp 283-291

Costiou S, Aranega V, Denker M (2020) Sub-method, partial behavioral reflection with reflectivity: Looking
back on 10 years of use. The Art, Science, and Engineering of Programming, 4(3)

Danglot B, Vera-Perez O, Yu Z, Zaidman A, Monperrus M, Baudry B (2019a) A snowballing literature study
on test amplification. J Syst Softw 157:110398. https://doi.org/10.1016/].jss.2019.110398. http://www.
sciencedirect.com/science/article/pii/S0164121219301736

Danglot B, Vera-Pérez OL, Baudry B, Monperrus M (2019b) Automatic test improvement with dspot: a study
with ten mature open-source projects. Empirical Software Engineering. Springer, Berlin

Daniel B, Jagannath V, Dig D, Marinov D (2009) Reassert: Suggesting repairs for broken unit tests. In:
Proceedings ASE 2009 (international conference on automated software engineering). IEEE CS, pp 433—
444

Delplanque J, Ducasse S, Polito G, Black AP, Etien A (2019) Rotten green tests. In: 41th international
conference on software engineering, ICSE "19. IEEE, pp 500-511. https://hal.inria.fr/hal-02002346

Denker M, Ducasse S, Lienhard A, Marschall P (2007) Sub-method reflection. Journal of Object Tech-
nology 6:275-295. https://doi.org/10.5381/j0t.2007.6.9.a14. http://www.jot.fm/contents/issue_2007_10/
paper14.html

Ducasse S (1999) Evaluating message passing control techniques in smalltalk. Journal of Object Oriented
Programming 12:39-50

Ducasse S (2019) Pharo with style. Square Bracket Associates

Fischer S, Haslinger EN, Zimmermann M, Thaller H (2020) An empirical evaluation for object initialization
of member variables in unit testing. In: Proceedings VST 2020 (IEEE workshop on validation, analysis
and evolution of software tests), pp 8—11

Fraser G, Arcuri A (2012) The seed is strong: Seeding strategies in search-based software testing. In: 2012
IEEE fifth international conference on software testing, verification and validation, pp 121-130

Fraser G, Arcuri A (2013) Whole test suite generation. IEEE Trans Softw Eng 39(2):276-291. https://doi.org/
10.1109/TSE.2012.14

Fraser G, Zeller A (2012) Mutation-driven generation of unit tests and oracles. IEEE Trans Softw Eng
38(2):278-292. https://doi.org/10.1109/TSE.2011.93

Fraser G, Zeller A (2011) Generating parameterized unit tests. In: Proceedings of the 2011 international
symposium on software testing and analysis, pp 364-374

Goldberg A, Robson D (1983) Smalltalk-80: The language and its implementation. Addison-Wesley
Longman Publishing Co Inc, USA

Grano G, De Iaco C, Palomba F, Gall HC (2020) Pizza versus pinsa: On the perception and measurability
of unit test code quality. In: 2020 IEEE international conference on software maintenance and evolution
(ICSME), pp 336-347

@ Springer

http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org/Vol-2605/11.pdf
https://softwareengineering.stackexchange.com/questions/156883/
https://doi.org/10.1109/TSE.2014.2342227
http://arxiv.org/abs/1503.05807
http://books.pharo.org/deep-into-pharo/
http://books.pharo.org/deep-into-pharo/
http://arxiv.org/abs/2108.12249
https://doi.org/10.1016/j.jss.2019.110398
http://www.sciencedirect.com/science/article/pii/S0164121219301736
http://www.sciencedirect.com/science/article/pii/S0164121219301736
https://hal.inria.fr/hal-02002346
https://doi.org/10.5381/jot.2007.6.9.a14
http://www.jot.fm/contents/issue_2007_10/paper14.html
http://www.jot.fm/contents/issue_2007_10/paper14.html
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2011.93

128 Page 54 of 55 Empir Software Eng (2022) 27:128

Li N, Offutt J (2016) Test oracle strategies for model-based testing. IEEE Trans Softw Eng 43(4):372-395.
https://doi.org/10.1109/TSE.2016.2597136

Lu ZX, Vercammen S, Demeyer S (2020) Semi-automatic test case expansion for mutation testing. In: 2020
IEEE workshop on validation, analysis and evolution of software tests (VST). IEEE, pp 1-7

Lukasczyk S, Kroil F, Fraser G (2020) Automated unit test generation for python. In: Aleti A, Panichella
A (eds) Search-based software engineering. Springer International Publishing, Cham, pp 9-24

Mairhofer S, Feldt R, Torkar R (2011) Search-based software testing and test data generation for a
dynamic programming language. In: Proceedings of the 13th annual conference on genetic and evolu-
tionary computation, GECCO ’11. Association for Computing Machinery, New York, pp 1859-1866.
https://doi.org/10.1145/2001576.2001826

Milani Fard A, Mirzaaghaei M, Mesbah A (2014) Leveraging existing tests in automated test generation
for web applications. In: Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pp 67-78

Mirshokraie S, Mesbah A, Pattabiraman K (2015) Jseft: Automated javascript unit test generation. In: 2015
IEEE 8th international conference on software testing, verification and validation (ICST), pp 1-10

Nijkamp N, Brandt C, Zaidman A (2021) Naming amplified tests based on improved coverage. In: 2021
IEEE 21st international working conference on source code analysis and manipulation (SCAM). IEEE,
pp 237-241

Oosterbroek W, Brandt C, Zaidman A (2021) Removing redundant statements in amplified test cases. In:
2021 IEEE 21st international working conference on source code analysis and manipulation (SCAM),
IEEE, pp 242-246

Pacheco C, Lahiri SK, Ernst MD, Ball T (2007) Feedback-directed random test generation. In: 29th
international conference on software engineering (ICSE’07), pp 75-84

Panichella A, Kifetew FM, Tonella P (2018) Automated test case generation as a many-objective opti-
misation problem with dynamic selection of the targets. IEEE Trans Softw Eng 44(2):122-158.
https://doi.org/10.1109/TSE.2017.2663435

Papadakis M, Kintis M, Zhang J, Jia Y, Traon YL, Harman M (2019) Mutation testing advances: An anal-
ysis and survey. Adv Comput 112:275-378. https://doi.org/10.1016/bs.adcom.2018.03.015. http://www.
sciencedirect.com/science/article/pii/S0065245818300305

Patrick M, Jia Y (2017) Kd-art: Should we intensify or diversify tests to kill mutants? Inf Softw Technol
81:36-51

Peck MM, Bouraqadi N, Fabresse L, Denker M, Teruel C (2015) Ghost: A uniform and general-purpose
proxy implementation. Sci Comput Program 98:339-359

Petke J, Haraldsson SO, Harman M, Langdon WB, White DR, Woodward JR (2018) Genetic improvement
of software: A comprehensive survey. IEEE Trans Evol Comput 22(3):415-432. https://doi.org/10.1109/
TEVC.2017.2693219

Petrovi¢ G, Ivankovi¢ M (2018) State of mutation testing at google. In: Proceedings of the 40th international
conference on software engineering: software engineering in practice, ICSE-SEIP 18. Association for
Computing Machinery, New York, pp 163—171. https://doi.org/10.1145/3183519.3183521

Petrovic G, Ivankovic M, Fraser G, Just R (2021) Practical mutation testing at scale: A view from google.
IEEE Trans Softw Eng, 1-1. https://doi.org/10.1109/TSE.2021.3107634

Pezze M, Rubinov K, Wuttke J (2013) Generating effective integration test cases from unit ones. In: 2013
IEEE Sixth international conference on software testing, verification and validation, IEEE, pp 11-20

Pluquet F, Marot A, Wuyts R (2009) Fast type reconstruction for dynamically typed programming languages.
In: Noble J (ed) Proceedings of the Sth symposium on dynamic languages, DLS 2009, october 26, 2010.
ACM, Orlando, pp 69-78. https://doi.org/10.1145/1640134.1640145

Ropgler J, Fraser G, Zeller A, Orso A (2012) Isolating failure causes through test case generation. In:
Proceedings of the 2012 international symposium on software testing and analysis, pp 309-319

Rojas JM, Fraser G, Arcuri A (2016) Seeding strategies in search-based unit test generation. Software
Testing, Verification and Reliability 26(5):366—401

Sélcianu A, Rinard M (2005) Purity and side effect analysis for java programs. In: International workshop
on verification, model checking, and abstract interpretation. Springer, pp 199-215

Thummalapenta S, Marri MR, Xie T, Tillmann N, De Halleux J (2011) Retrofitting unit tests for param-
eterized unit testing. In: International conference on fundamental approaches to software engineering.
Springer, pp 294-309

Tillmann N, Schulte W (2006) Unit tests reloaded: Parameterized unit testing with symbolic execution. IEEE
Softw, 23(4). https://doi.org/10.1109/MS.2006.117

Tonella P (2004) Evolutionary testing of classes. In: Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis - ISSTA *04. https://doi.org/10.1145/1007512.1007528

@ Springer

https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1145/2001576.2001826
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1016/bs.adcom.2018.03.015
http://www.sciencedirect.com/science/article/pii/S0065245818300305
http://www.sciencedirect.com/science/article/pii/S0065245818300305
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1145/3183519.3183521
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1145/1640134.1640145
https://doi.org/10.1109/MS.2006.117
https://doi.org/10.1145/1007512.1007528

Empir Software Eng (2022) 27:128 Page 55 of 55 128

Vera-Pérez OL, Danglot B, Monperrus M, Baudry B (2019) Suggestions on test suite improvements with
automatic infection and propagation analysis. arXiv:1909.04770

Vera-Pérez OL, Monperrus M, Baudry B (2018) Descartes: A pitest engine to detect pseudo-tested meth-
ods: Tool demonstration. In: 2018 33rd IEEE/ACM international conference on automated software
engineering (ASE), pp 908-911

Wibowo JTP, Hendradjaya B, Widyani Y (2015) Unit test code generator for lua programming language. In:
2015 international conference on data and software engineering (ICoDSE), pp 241-245

Wilkinson H (2019) Vm support for live typing: Automatic type annotation for dynamically typed languages.
In: Proceedings of the Conference Companion of the 3rd International Conference on Art, Science, and
Engineering of Programming, Programming ’19. Association for Computing Machinery, New York.
https://doi.org/10.1145/3328433.3328443

Wilkinson H, Chillo N, Brunstein G (2009) Mutation testing. European Smalltalk User Group (ESUG 09).
Brest, France. http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering. Kluwer Academic Publishers, Boston

Xie T (2006) Augmenting automatically generated unit-test suites with regression oracle checking. Lect
Notes Comput Sci, 380—403. https://doi.org/10.1007/11785477_23

Xu Z, Cohen MB, Rothermel G (2010) Factors affecting the use of genetic algorithms in test suite aug-
mentation. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation,
pp 1365-1372

Xu Z, Rothermel G (2009) Directed test suite augmentation. In: 2009 16th asia-pacific software engineering
conference. IEEE, pp 406413

Xuan J, Xie X, Monperrus M (2015) Crash reproduction via test case mutation: let existing test cases help.
In: Proceedings of the 2015 10th joint meeting on foundations of software engineering, pp 910-913

Yoo S, Harman M (2012) Test data regeneration: generating new test data from existing test data. Software
Testing, Verification and Reliability 22(3):171-201

Yoshida H, Tokumoto S, Prasad MR, Ghosh I, Uehara T (2016) Fsx: fine-grained incremental unit test gen-
eration for c/c++ programs. In: Proceedings of the 25th international symposium on software testing and
analysis, pp 106-117

Zaidman A, Rompaey BV, van Deursen A, Demeyer S (2011) Studying the co-evolution of production and
test code in open source and industrial developer test processes through repository mining. International
Journal on Empirical Software Engineering 16(3):325-364. https://doi.org/10.1007/s10664-010-9143-7

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/1909.04770
https://doi.org/10.1145/3328433.3328443
http://www.esug.org/data/ESUG2009/Friday/Mutation_Testing.pdf
https://doi.org/10.1007/11785477_23
https://doi.org/10.1007/s10664-010-9143-7

	Small-Amp: Test amplification in a dynamically typed language
	Abstract
	Introduction
	Background
	Test amplification
	Pharo
	Protocols

	Coding Conventions in Dynamically Typed Languages
	Untyped Parameters
	No Return Types
	Different Return Types
	Accessor Methods
	Pass-by-reference
	Cascading
	Instance Creation

	Small-Amp Design
	Main Algorithm
	Input Amplification
	Amplifying Literals
	Amplifying Method Calls

	Assertion Amplification
	Observing State Changes Via Object Serialisation
	Identifying Accessor Methods
	Preventing Flaky Tests Via Trace Logs
	Recursive Assertion Generation
	Intended Values Versus Actual Values
	Example

	Test Selection – Prefer Focussed Tests

	Small-Amp Extras Compared to DSpot
	Dynamic Profiling to Collect Type Information
	Profiling by Method-Proxies
	Profiling by Metalinks
	How the Collected Data is Used

	Test Input Reduction
	Why Diversity is Important?

	Improving Readability Via Post-Processing
	Assertion Reduction
	Comply with Coding Conventions

	Evaluation
	Dataset and Metrics
	Selecting a Dataset
	Detecting the Class Under Test
	Metrics

	RQ1 — Pull Requests
	Pull-Requests Preparation
	Pilot Pull-Request
	Pull-Request Details
	PolyMath
	Pharo-Launcher
	DataFrame
	Bloc
	GraphQL
	Zinc
	DiscordSt
	MaterialDesignLite
	PetitParser2
	OpenPonk
	Telescope

	RQ2 — Focus
	RQ2: To what extent are improved test methods considered as focused?

	RQ3 — Mutation Coverage
	RQ3: To what extent do improved test classes kill more mutants than developer-written test classes?
	The Effect of Randomness

	RQ4 — Amplification Steps
	RQ4: What is the contribution of input amplification and assertion amplification (the main steps in the test amplification algorithm) to the effectiveness of the generated tests?
	Contribution of the Assertion-Amplification Step
	Contribution of the Type Sensitive Input Amplifiers

	RQ5 — Comparison
	RQ5: How does Small-Amp compare against DSpot?

	RQ6 — Time Costs
	RQ6: What is the time cost of running Small-Amp, including its steps?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability (a.k.a. Conclusion Validity)

	Related Work
	Dynamically-Typed Languages
	Mutation Testing

	Future Work
	Test Amplification Ecosystem
	Extended Use-Cases for Dynamic Profiling
	Test Method Models, Best Practices and Structured Strings
	Using Patterns to Guide Test Amplification
	Reducing the Mutation Testing Burden
	Using Multiple Type-Inference Mechanisms
	Involving Readability Metrics

	Conclusion
	References

